Hydrides in star-forming regions

RCW120 Herschel A. Zavagno

Ewine F. van Dishoeck Leiden Observatory/MPE

The Hydride Toolbox, December 12 2016, Paris

Outline

- Introduction
- Cold outer envelope
- Shocks
- Warm inner envelope
- Disks

Focus on: H₂O, NH₃, other hydrides but not H₂

Diagnostics of - physical processes - type of chemistry

See reviews by vD et al. 2011, 2013, Bergin & van Dishoeck 2012, Melnick 2009, ...

Embedded protostellar phase

- Physical components
 - Cold outer envelope
 - Warm inner envelope→hot core
 - Bipolar outflow→ shocks
 Disk

- Multi-wavelength observations
 - Near-IR (VLT/CRIRES, Keck)
 - , − Mid-IR (Spitzer-IRS→ JWST)
 - Far-IR (Herschel)
 - Sub-mm (Single dish, ALMA)

All these components are contained in a single dish beam; need interferometer to disentangle

Hydrides as tracers of star formation: a beautiful example

Nisini et al. 2010, 2014

Water traces 'hot spots' where shocks dump energy into cloud

Pioneering space missions

ISO 1995-1998 van Dishoeck 2004

SWAS Melnick 2009

Spitzer 2003-2009

Cannot properly summarize these missions in this talk

Herschel legacy

HIFI, PACS, SPIRE: 55-600 μm spectroscopy, R=10³-10⁷ Beam 20-47"

Spectroscopy: new hydrides Herschel

 H_2O^+

Probes new atomic H-rich phase of diffuse ISM, but also seen in star-forming regions

Ossenkopf et al., Benz et al., Bruderer et al., Gerin et al., Wyrowski et al., Gupta et al., Schilke et al., Lis et al. 2010; Neufeld et al. 2012, de Luca et al. 2012, Indriolo et al. 2015, Barlow et al. 2013

Many lines of the same hydride: Ladders in Orion-KL

H₂S ladder

Other hydride telescopes

APEX

Herschel protostar surveys

• WISH: vD et al.

- 26 low (<10²), 6 intermediate (10²-10⁴), 19 high-mass (>10⁴ M_{Sun}) YSOs
- HIFI, selected PACS lines
- WILL: Mottram, vD et al.
 - 45 low-mass YSOs
 - HIFI, selected PACS lines
- **DIGIT:** Evans, Greene et al.
 - 30 low-mass YSOs
 - Full PACS scans
- COPS: Kristensen, Greene et al.
 - SPIRE for WISH + DIGIT low-mass YSOs
 - HIFI CO 16-15

Also: HOPS Orion protostars PACS (Manoj et al. 2013), Cygnus protostars HIFI (Bontemps et al.)

Water In Star-forming regions with Herschel The WISH team

Leiden, April 2010

425 hr guaranteed time program + OT 74 refereed papers

Summary in van Dishoeck et al. 2011, PASP Bergin & van Dishoeck 2012, van Dishoeck et al. 2013, Chem. Rev., 2014, PPVI

Cold outer envelope

Formation of hydrides on grains

Bulk of water is formed early, before cloud collapse

'Water is older than the Sun' (Cleeves et al. 2015)

Water ice is abundant and common!

Boogert, Pontoppidan et al. 2008, Öberg et al. 2011 Boogert et al. 2015, ARAA

Ices contain significant fraction of heavy elements (but perhaps not all of oxygen)

Ammonia and methane ices

Bottinelli et al. 2010

Median ice abundances

Species	Low mass	High mass	Background	
H ₂ O	100	100	100	
CH ₄	5	2	<3	
NH ₃	6	7	<7	

Silicate subtracted

Ice abundance distributions

Note narrow distributions for CH_4/H_2O and NH_3/H_2O \rightarrow similar ice formation conditions across the Galaxy (T_{dust} , H/O, ...)

Water formation: gaseous water reservoir with *Herschel*

WISH

L1544 Pre-stellar core

Caselli et al. 2012 Mottram et al. 2013 Schmalzl et al. 2014

Dark cloud on verge of collapse (red-shifted absorption→inward motions) Simple chemistry reproduces abundance structure well

Water distribution in dense clouds

Caselli et al. 2012 Schmalzl et al. 2014

$n=2.10^4 - 5.10^6$ cm⁻³, T=10 K Layer of water gas where ice is photodesorbed

Inferred water abundance L1544

Also need efficient photodesorption in center \rightarrow G_{ISRF}, G_{CR}

Cold water abundance

- Water abundance profiles constrained for lowmass pre- and protostellar cores
 - Caselli, Keto et al. 2012, Mottram et al. 2013, Schmalzl et al. 2014
- High mass: jump profiles
 - Marseille et al. 2010, Herpin et al. 2012, 2016, Choi et al. 2016
- Simple network (SWaN)
 - Identify main processes and parameters → FUV radiation: internal and external

Protostars: water abundance profiles

NGC 1333 IRAS4A

Water ice abundances are low

Analysis of sources for which both ice and gas detected

Observations: only 30-80 ppm locked up in water ice (vs 320 ppm expected)

- \rightarrow Requires low initial water ice abundance
- → Short pre-stellar stage (10⁵ yr at $n(H_2) \sim 10^4 \text{ cm}^{-3}$) or Water ice locked in larger grains Schm

Schmalzl et al. 2014

Water formation routes

Warm water

Water in low-mass protostars

From low to high mass protostars

Measuring infall rates with hydrides

Kristensen et al. 2012, Mottram et al. 2013

L1551 557 GHz outflow subtracted

L1551 557 GHz outflow subtracted

L1551 557 GHz outflow subtracted

L1551 557 GHz outflow subtracted

Constrain G_{ISRF}, G_{CR} and velocity profile / infall or expansion rate

Low-mass sources

Source						
	$r_{\rm mdi}$ (10 ³ AU)	$M_{ m g}$ (${ m M}_{\odot}$)	\dot{M}_{inf} (10 ⁻⁵ M _o yr ⁻¹)	t_{inf} (10 ⁴ yr)	$t_{\rm ff}$ (10 ⁴ yr)	
IRAS4A	1	0.68	15.4	0.44	10.4	
L1527	5	0.08	1.6	0.47	7.6	
BHR71	3	0.90	3.7	2.42	19.7	
IRAS15398	3	0.50	3.4	1.46	7.4	
L1157	3	1.17	5.3	2.22	13.5	

Mottram et al. 2013

dM/dt infall=10⁻⁵-10⁻⁴ M_{sun}/yr

Only a small fraction of sources shows infall! A few show expansion Most sources show no signature

High-mass sources

Infrared Dark Cloud

Shipman et al. 2014

SCUBA peak

Inverse P-Cygni profile \rightarrow Infall rate 10⁻³ M_{sun}/yr

- dM/dt infall=10⁻⁴ – 10⁻² M_{sun}/yr for sample of high mass HMPOs (Herpin et al. 2012, 2016)

NH₃ as infall tracer

G34.3

- NH₃ suffers less from contamination by outflow and foreground clouds

 $dM/dt infall = (0.4-4.5)x10^{-2} M_{sun}/yr$

Hajigholi, C. Persson et al. 2015

NH₃ as infall tracer

Infall onto protocluster

Wyrowski et al. 2012, 2016 SOFIA-Great

- dM/dt infall = 0.3-16 x 10⁻³ M_{sun} /yr on clump/cluster scale (similar to H_2O results) - Infall rates ~10-30% of free fall \rightarrow Test of quasi-static vs turbulent scenarios Hydrides as a tracer of shock physics

Hot H₂O, OH in low-mass protostars

All lines assigned to 4 species, from levels up to several thousand K

CO rotational diagram: 3 components

~100 (J_u =1-12), 300 (J_u =13-25) and 700 (J_u >25) K

Goicochea et al. 2012

Universal CO ladders low vs high-mass YSOs

Karska et al. 2013, 2014a, 2017

Similar temperature components

Universal profiles and T_{rot}

San José-García et al. 2015

Karska et al. 2014a Manoj et al. 2013

HIFI evidence for multiple components water vs CO 16-15

Kristensen et al. 2017

Water and high-J CO follow each other, not CO low J

Water does not follow low-J CO

HH 211

- H₂O and H₂ go together, but not with CO low J
- H₂O abundance as low as 10⁻⁷

H₂O: multiple components

H₂O bullets in protostellar jet

Kristensen et al. 2011

WISH

Understanding the line profiles

Mottram et al. 2014, 2017

Understanding the line profiles

 $H_2O:$ cavity shock component = non-dissociative shocks.

Medium (offset) component:

 $H_2O:$ spot shock component = dissociative shocks.

Two components also seen in CO ladder

San Jose Garcia et al. 2015 Mottram et al. 2014, 2017 Kristensen et al. 2012, 2017

Shock physics: Line ratios

Same species $n_{\rm pre} \sim 10^5 \, {\rm cm}^{-3}$ $v_{\rm S} > 20 \, {\rm km s}^{-1}$

Different species

Karska et al. 2014b Perseus sample Karska et al. 2017 Kaufman, Melnick et al.

Shocks reproduce excitation, but not chemistry: H₂O overproduced *Points to need for UV irradiated shock models*

 $\log_{10} [n_{\rm H} ({\rm cm}^{-3})]$

Pre-shock density

Origin of hydrides: irradiated shocks

Talk by Benz

Benz et al. 2016 Bruderer et al. 2009

Kristensen et al. 2013

Favor scenario C of irradiated shock with FUV enhanced by factor G_0 =few hundred

Offset from protostar: outflow spots with shocked water lines L1448 R4

Variations of physical conditions vs velocity uniquely probed by profiles of H₂O lines at different energies

Outflow shocks probed by CO and H₂O

- The jet impact on the cavity (Mach disk) upstream of the bow, associated with a hydrodynamical shock

- The cloud shock (bow), associated with a magnetized shock

Highly excited OH as probe of Ly $\boldsymbol{\alpha}$

HH211

Tappe et al. 2008, 2012 Carr & Najita 2014 disks

$H_2O + hv \rightarrow OH(v,J) + H$ through B state

Theory: van Harrevelt & van Hemert 2001; in Yang, Harich et al. 2000

Conclusion physics

- CO ladder reveals universal cold, warm and hot components through excitation
- H₂O reveals multiple (new) physical components through kinematics
- Emission dominated by shocks
 - Non-dissociative shock CO, H₂O, some OH
 - Current models too much H₂O emission → UV
 - Dissociative shock O I, OH, some H₂O (medium/offset)
- Processes similar from low- to high-mass YSOs

Hot water chemistry in shocks Ice sputtering vs high-*T* water production Water vs CH₃OH, NH₃,

Viti et al. 2011, Gomez-Ruiz et al. 2016

Suutarinen et al. 2014, Leurini et al. 2014 van Kempen et al. 2014, Herpin et al. 2016

- Water at low velocities mostly sublimated/sputtered
- Water at high velocities formed by high-T chemistry
- NH₃ and CH₃OH destroyed by reactions with H at high $T \rightarrow$ diagnostic

Hot cores vs outflows

Hot core

Compact (~200 AU) region where H_2O ice sublimates Dominates NOEMA, ALMA $H_2^{18}O$ emission **Outflows, shocks** Extended emission along outflow; H₂O enhanced in shock Dominates Herschel emission JWST for *imaging* shocks

 $0.05 \text{ pc} \sim 1$

High mass inner abundance

Model requires jump in water abundance in inner envelope

High temperature chemistry: How 'wet' are hot cores?

- H₂O destroyed in inner envelope or physical structure?

Hot core abundances: low mass

- Herschel H₂¹⁸O lines are broad => dominated by outflow
- Narrow (envelope) H₂¹⁸O high-J lines in a few sources, but high optical depth line + cont
- Use H₂¹⁸O 203 GHz narrow line with NOEMA/ALMA to constrain abundances

IRAS4A NOEMA

Jørgensen & vD 2010 Persson et al. 2012, 2014

Hot water with ALMA

IRAS16293-2422 protobinary

Hot water detection at both sources
Source size ~25 AU (orbit Uranus)

H₂O abundance less than 10⁻⁴ even if disk is taken into account (except IRAS2A) (not yet understood)

Band 9 692 GHz data

Persson et al. 2016

Surprise: high D₂O/HDO in warm gas

Coutens et al. 2014a,b

 $D_2O/HDO~10^{-2} >> HDO/H_2O~10^{-3}$

Can be understood as evolution

Furuya et al. 2016

History of water in young disk

End of accretion phase

Visser et al. 2011 Furuya et al. 2016

- Most water is preserved in tact, some water has been processed
- Bulk of water enters disk as ice

HDO/H₂O as tracer history solar system?

What does similarity cometary and protostellar envelopes values imply?

Young disks, snowlines

Inner disk: Talk Pontoppidan

H₂O snowline traced by HDO, HCO⁺

IRAS15398 ALMA

Jørgensen et al. 2013 Bjerkeli et al. 2016

Van 't Hoff et al. 2017 N1333 IRAS2A

 $H_2O + HCO^+ \rightarrow H_3O^+ + CO$

Snowlines move

Water snowline vs dM/dt

Harsono et al. 2015

Imaging water snowline (indirect)

Cieza et al. 2016

Cold water in disks

Water emission consistently up to factor 10 lower than expected, even in models with heavy freeze-out

Hogerheijde et al. 2011, in prep. Du, Bergin et al. 2017 Fedele et al. in prep.

Detection NH₃ in disks

Salinas et al. 2016

NH₃/H₂O~0.05-0.1, consistent with interstellar ices

Absence of cold gaseous water

Water sequestered in large bodies early

- Settling of mm-sized grains, planetesimal formation TW Hya ALMA
- Water follows mm grains
 - Moved inward due to radial drift

Andrews et al. 2016

Bergin et al. 2010 Du et al. 2015 Salinas , Hogerheijde et al. 2016

Hydrides as tracers of star- and planet formation

B. Saxton NRAO