Physics, chemistry and excitation of hydride molecules

Introduction

Molecular and thermochemical properties

Some illustrations of the interplay between observations and chemical mechanisms

- New analysis of the N^+ + H_2 reaction and its isotopic variants

Paris, December 12, 2016

- Tracers of atomic gas: OH⁺ / ArH⁺
- Tracers of molecular gas : H_3^+ , CH, HF

LERMA

Examples of (photo)chemical excitation (OH, H_3O^+ , NH_3)

Summary

bservatoire

The increasing attention to hydrides

After the first detection of CH⁺, CH in absorption against bright stars

UV/Visible absorption spectroscopy : H_2 , HD, OH, OH⁺, NH Vibrational IR absorption spectra : H_3^+ , CH_4 Rotational submillimeter spectra: ISO: CH^+ , CH_2 , H_2O Herschel: CH, CH⁺, OH, H₂O, OH⁺, H₂O⁺, H₃O⁺, NH, NH₂, NH₃, SH, SH^{+,} H₂S, HF, HCI, HCI⁺, H₂CI⁺, ArH⁺ Inversion spectra: NH₃, H₃O⁺ Λ doubling: OH, CH

decreasing frequency

The increasing attention to hydrides

After the first detection of CH⁺, CH in absorption against bright stars

UV/Visible absorption spectroscopy : H_2 , HD, OH, OH⁺, NH Vibrational IR absorption spectra : H_3^+ , CH₄

Rotational submillimeter spectra

very luminous region of massive star formation can be used as a background THz source

Absorption by gas in foreground material

"clean experiment" allowing robust determination of molecular column densities.

Inversion spectra: NH_3 , H_3O^+ Λ doubling: OH, CH

Physics, chemistry and excitation of hydride molecules

Introduction

Molecular and thermochemical properties

Some illustrations of the interplay between observations and chemical mechanisms

- New analysis of the $N^+ + H_2$ reaction and its isotopic variants
- Tracers of atomic gas: OH⁺ / ArH⁺
- Tracers of molecular gas : H_3^+ , CH, HF

Examples of (photo)chemical excitation (OH, H_3O^+ , NH_3)

Summary

Paris, December 12, 2016

Importance of electronic structure

✓ Spectroscopy

UV/visible electronic transitions (talk of S. Federman)
 rotational/vibrational spectra pattern highly dependent on the ground electronic state property (talk of Domenech)
 intensity pattern / opacities (talk of Tennyson)

✓ Collisional excitation

PES computations

Collision equations and possible approximations for the different angular momenta (talks of Faure, Lique)

✓ Chemical reactivity

open shell radicals are more reactive than closed electronic shells. (talks of Schneider, Alcaraz)

Closed shell hydrides

Closed shell hydrides

Hydrides with non zero spin

Hydrides with non zero spin

Isotopically substituted ISM hydrides

diatomics			3	4	5
X ¹ Σ ⁺	Х ² П	X ³ Σ-	X ¹ A ₁	X ¹ A ₁	X ¹ A ₁
HD	OD	ND	H₂D⁺	NH ₂ D	CH ₃ D*
¹³ CH+			D₂H⁺	ND ₂ H	NH₃D⁺
³⁸ ArH ⁺		HDO	ND ₃		
			D ₂ O	¹⁵ NH ₃	
				¹⁵ NH ₂ D	
				CH ₂ D ^{+*}	
* tentative					

See talk of P. Caselli

Thermodynamical properties (1)

Thermodynamical properties (2)

$$X^+ + H_2 \rightarrow XH^+ + H$$

Thermodynamical properties (3)

$$X + H_3^+ \rightarrow XH^+ + H_2$$

Chemical gas phase scenarii

Element	Ionization	Endothermic	ity (Kelvin equivale	$nt = \Delta E/k_B$) for	oommonto	I
	(eV)	$X + H_2 \rightarrow XH + H$	$X^+ + H_2 \rightarrow XH^+ + H$	$X + H_3^+ \rightarrow XH^+ + H_2$	Comments	T
He	24.587	No reaction	Exothermic, but primary channel is to He + H + H ⁺	29,000	unstable ground state of HeH	-
с	11.260	11,000	4,300 🗹		energy input required w C ⁺	
N	14.534	15,000	??	10,000	state to state chemistry (o/p)	K
0	13.618	920 🗹			CRs / warm neutral chemistry	
F	17.423			10,000	neutral chemistry	
Ne	21.564	No reaction	Exothermic, but primary channel is to Ne + H + H ⁺	27,000	Poorly known NeH+ spectro	1
Si	8.152	17,000	15,000		energy input required w Si ⁺	F
Р	10.487	19,000	13,000		energy input required w P ⁺	
s	10.360	10,000	10,000 🗹		energy input required w S ⁺	
cl	12.968	515	M		sensitivity to threshold photons	T
Ar	15.760	No reaction		6,400	Cosmic rays / small f _{H2}	K
Exothermic reaction of element in its main ionization state Endothermic reaction of element in its main ionization state Endothermic reaction of element not main ionization state Endothermic reaction of element not main ionization state Endothermic reaction of element not main ionization state Important						
adapted from Gerin et al. 2016, ARAA 54, 181 and Neufeld 2016, SOFIA conference						

Physics, chemistry and excitation of hydride molecules

Introduction

Molecular and thermochemical properties

Some illustrations of the interplay between observations and chemical mechanisms

- New analysis of the N^+ + H_2 reaction and its isotopic variants

- Tracers of atomic gas: OH⁺ / ArH⁺
- Tracers of molecular gas : H_3^+ , CH, HF

LERMA

Examples of (photo)chemical excitation (OH, H_3O^+ , NH_3)

Summary

Paris, December 12, 2016

Revisiting the N⁺ (³P_i) + H₂ (J) \rightarrow NH⁺ + H reaction (1)

symmetries Gonzalez et al. 1986, Chem.Phys. 104, 57 Russel & Manolopoulos 1999, JCP110, 177 Almost thermo-neutral reaction Fine structure channels mixed to reactive channels

Highly perturbed structure of NH⁺

Hubers et al. 2009, JCP131, 4311

Revisiting the N⁺ (³P_i) + H₂ (J) \rightarrow NH⁺ + H reaction (1)

Zymak et al. 2013, ApJ 768, 86

Almost thermo-neutral reaction Fine structure channels mixed to reactive channels

Highly perturbed structure of NH⁺

Hubers et al. 2009, JCP131, 4311

Revisiting the N⁺ (³P_i) + H₂ (J) \rightarrow NH⁺ + H reaction (2)

Grozdanov & McCarroll 2015, JPCA119, 5988

interprete the collision cross sections measurements of Sunderlin & Armentrout 1994, JCP 100, 5639 of the N⁺ + H₂ (HD, D₂) reactions

$$101 \le \Delta E_e \le 106 \text{ meV}$$

Use of statistical theory of reactive collisions where the energies of the fine structure states (j=0, 1, 2) of the N⁺ ions are treated on an equal footing with other energies of internal rotation motions.

Critical parameter : ΔE_e : equilibrium ergicity (vibrationless energy variation)

$$\frac{N^{+} + H_{2}}{\Delta E_{e}} = D_{e}(H_{2}) - D_{e}(NH^{+}) = \Delta E_{0} + E_{00}(H_{2}) - E_{00}(NH^{+})$$
$$\Delta E_{0} = D_{0}(H_{2}) - D_{0}(NH^{+})$$

<u>N+ + HD</u>

 $\begin{aligned} NH^+ \ channel \\ \Delta E_e &= D_e(HD) - D_e(NH^+) = \Delta E_0^{-1} + E_{00}(HD) - E_{00}(NH^+) \\ \Delta E_0^{-1} &= D_0(HD) - D_0(NH^+) \end{aligned}$

$$\begin{split} &ND^+ \ channel \\ &\Delta E_e = D_e(HD) - D_e(ND^+) = \Delta E_0^2 + E_{00}(HD) - E_{00}(ND^+) \\ &\Delta E_0^2 = D_0(HD) - D_0(ND^+) \end{split}$$

Revisiting the N⁺ (³P_i) + H₂ (J) \rightarrow NH⁺ + H reaction (3)

- Experimental results of o-H₂ from Marquette et al. reproduced satisfactorily.
- ➡ p-H₂ less satisfactory
- \Rightarrow state to state reaction rates including fine structure states of N⁺ and H₂ (J=0,1)

Endothermicities computed with the assumption that $\Delta E_e = 101 \text{ meV}$.

					-	
Reactio	n		ΔE_0 (meV	ΔE_0	(K)	
$N^{+}({}^{3}P_{0}) + H_{2}(J = 0)$	\rightarrow	$NH^+ + H$	18.53	215.	.0	
$N^{+}(^{3}P_{0}) + H_{2}(J = 1)$	\rightarrow	$NH^+ + H$	3.84	44.0	6	
$N^{+}(^{3}P_{1}) + H_{2}(J = 0)$	\rightarrow	$NH^+ + H$	12.49	144.	.9	
$N^{+}(^{3}P_{1}) + H_{2}(J = 1)$	\rightarrow	$NH^+ + H$	-2.20		2	
$N^{+}(^{3}P_{2}) + H_{2}(J = 0)$	\rightarrow	$NH^+ + H$	2.31	26.	8	
$N^{+}(^{3}P_{2}) + H_{2}(J = 1)$	\rightarrow	$NH^+ + H$	-12.38			
$N^{+}(^{3}P_{0}) + HD(J = 0)$	\rightarrow	$ND^+ + H$	4.21	48.	9	
$N^{+}(^{3}P_{0}) + HD(J = 0)$	\rightarrow	$NH^+ + D$	54.06	627.	.3	
$N^{+}(^{3}P_{1}) + HD(J = 0)$	\rightarrow	$ND^+ + H$	-1.83	~		
$N^{+}(^{3}P_{1}) + HD(J = 0)$	\rightarrow	$NH^+ + D$	48.02	5 '	hem	
$^{15}N^{+}(^{3}P_{0}) + H_{2}(J = 0)$	\rightarrow	$NH^+ + H$	18.2	~~~ /	45'16	$\Theta_{\partial,o,i}$
${}^{15}N^{+}({}^{3}P_{0}) + H_{2}(J = 1)$	\rightarrow	$NH^+ + H$	3.51	0 Do	N is	Led.
${}^{15}N^{+}({}^{3}P_{0}) + HD(J = 0)$	\rightarrow	¹⁵ ND ⁺ + H	3.74	4-	Dita	larger each
					··· a	lar than lon r
			NAL T	그는 것이 같이 나는		ger that ate
Reaction rate coeffici	ents (of Marquette e	et al. 1988,	JCP 89, 2	20411	end of NI COefficient
Reaction 8 K	20	K 27 K	45 K	68 K 1	63 K	inerm: + Cient
N^+ + nH_{2} (1) 2.3(-12)	4.0(-	-11) $1.0(-10)$	1.6(-10) 2.2	(-10) 3.5((-10)	City Of A
$N^+ + pH_2^2$ (6)	<1.0(1.0(-10) 2.7(-11)	2.0(-11) 6.6	(-11) 3.0	- 10)	· · · · · · · · · · · · · · · · · · ·
N ⁺ + HD (4) ····	1.4(-	- 10)	3.3(- 12) 1.0	(– 11) 7.4((– 11) 	

K 68 K 163
10) 2.2(- 10) 3.5(-
(11) $(0.6(-11))$ (12) $(1.0(-11))$ $(1.0(-11))$ $(1.0(-11))$

Endothermicities computed with the assumption that $\Delta E_e = 101 \text{ meV}$.

Endothermicities computed with the assumption that $\Delta E_e = 101 \text{ meV}$. $\Delta E_0 \text{ (meV)}$ ΔE_0 (K) Reaction Adams & Smith 1985 $N^{+}({}^{3}P_{0}) + H_{2}(J = 0)$ $NH^+ + H$ 18.53 215.0 \rightarrow $N^+ + HD$ $N^{+}(^{3}P_{0}) + H_{2}(J = 1)$ $NH^+ + H$ 3.84 44.6 \rightarrow Marquette et al. 1988 fit $N^{+}(^{3}P_{1}) + H_{2}(J = 0)$ $NH^+ + H$ 12.49 \rightarrow 144.9 $N^{+}(^{3}P_{1}) + H_{2}(J = 1)$ $NH^+ + H$ -2.20 \rightarrow **10**⁻¹⁰ Marquette et al. 1988 $N^{+}(^{3}P_{2}) + H_{2}(J = 0)$ 2.31 \rightarrow $NH^+ + H$ 26.8 $N^{+}(^{3}P_{2}) + H_{2}(J = 1)$ -12.38 \rightarrow $NH^+ + H$ $(cm^{3}s^{-1})$ N^+ (³P₀) + HD (J = 0) \rightarrow $ND^+ + H$ 4.21 48.9 $^{14}N^+ + H\Gamma$ $N^{+}(^{3}P_{0}) + HD(J = 0)$ \rightarrow $NH^+ + D$ 54.06 × N^+ (³P₁) + HD (J = 0) \rightarrow $ND^+ + H$ -1.83¹⁵N⁺ + HD **10**⁻¹¹ $N^{+}(^{3}P_{1}) + HD(J = 0)$ \rightarrow NH⁺ + D 48.02 557.2 ${}^{15}N^{+}({}^{3}P_{0}) + H_{2}(J = 0)$ \rightarrow $NH^+ + H$ 18.2211.2 ${}^{15}N^{+}({}^{3}P_{0}) + H_{2}(J = 1)$ \rightarrow $NH^+ + H$ 3.51 40.7 ${}^{15}N^{+}({}^{3}P_{0}) + HD(J = 0)$ $^{15}ND^{+} + H$ \rightarrow 3.7443.4 **10**⁻¹² The quite large value reported for N⁺ + HD rate 2 0 4 6 8 10 12 100 / T

The quite large value reported for N^{+} + HD rate coefficient is somewhat puzzling The proposed fit of Marquette et al, k=3.17 10⁻¹⁰ exp(-16.3/T), is based on this *single* point and the measurement of Adams & Smith 1985, CPL117, 67 at 300K.

Grozdanov et al. 2016, A&A589, A105 Theoretical statistical model calculations based on computed endothermicities

State to state reaction rate coefficients for $N^+(J) + H_2(J)$, HD(J) and ${}^{15}N^+(J) + H_2(J)$, HD(J).

Revisiting the N⁺ (³P_i) + H₂ (J) \rightarrow NH⁺ + H reaction (4)

Suggested fits for the various isotopics variants (Grozdanov et al, 2016)

Rea	action		k (cm ³ s ⁻¹)
$N^{+} + p - H_{2}$	→	$NH^+ + H$	$3.17 \times 10^{-10} \times \exp(-213.8/T)$
$N^{+} + 0 - H_{2}$	\rightarrow	$NH^+ + H$	$4.86 \times 10^{-10} \times \exp(-41.1/T)$
${}^{15}N^{+} + p - H_2$	\rightarrow	¹⁵ NH ⁺ + H	$3.19 \times 10^{-10} \exp(-208.3/T)$
${}^{15}N^{+} + o - H_2$	\rightarrow	¹⁵ NH ⁺ + H	$5.35 \times 10^{-10} \exp(-37.0/T)$
$N^+ + HD$	\rightarrow	$ND^+ + H$	4.77 × 10 ⁻¹⁰ exp(-50.1/T)
¹⁵ N ⁺ + HD	\rightarrow	¹⁵ ND ⁺ + H	$4.92 \times 10^{-10} \times \exp(-47.2/T)$

- Minor effect on NH/ND model predictions as NH(ND) principally produced from DR of N₂H⁺ (N₂D⁺)
- Similar NH₃ gas phase abundance (coming specifically from N⁺ + o-H₂)
- Reduction of deuterated ammonia
- New experiments on N⁺ + HD welcome!

• Full theoretical treatment still to be done (introduction of the fine and electronic structure of NH⁺)

Physics, chemistry and excitation of hydride molecules

Introduction

Molecular and thermochemical properties

Some illustrations of the interplay between observations and chemical mechanisms

- New analysis of the N^+ + H_2 reaction and its isotopic variants

- Tracers of atomic gas: OH⁺ / ArH⁺

- Tracers of molecular gas : H_3^+ , CH, HF

Examples of (photo)chemical excitation (OH, H_3O^+ , NH_3)

Summary

Paris, December 12, 2016

Ion molecule chemistry at work : a measure of the cosmic ionization rate and molecular fraction Oxygen chemistry 2 channels, 3 successive possible steps $H \xrightarrow{CR} H^+ \rightleftharpoons^{O} O^+ \xrightarrow{H_2} OH^+$ H_2 Gerin et al. 2010, AA518, L110 \rightarrow H₂O⁺ \rightarrow H₃O⁺ diffuse Neufeld et al. 2010, AA521, L10 P/P-/e- P/P-/e-Hollenbach et al. 2012, ApJ754, 105 Indriolo et al. 2012, ApJ758, 83 Indriolo & McCall 2012, ApJ745, 91 $H_2 \xrightarrow{CR} H_2^+ \xrightarrow{H_2} H_3^+ \xrightarrow{O} OH^+ \xrightarrow{H_2} H_2O^+ \xrightarrow{H_2} H_3O^+$ dense Indriolo et al. 2015, ApJ800, 40 e⁻/ CO, N₂, ... e⁻ Le Petit et al. 2016, A&A585, A105 Well studied chemistry (see Indriolo et al. 2012) apart photodissociation of OH⁺ ArH⁺ chemistry 2channels, one single step Schilke et al. 2014, AA 566, A29 CR, Xray

Neufeld & Wolfire 2016, ApJ 826: 183

badly known: RR of Ar^+ (\neq collisional radiative recombination)

DR of ArH⁺ (only upper limit)

Simplified chemical network

$H_{2} + CR \rightarrow H_{2}^{+} + e$ $H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + e$ $H_{3}^{+} + e \rightarrow \text{products}$	ζ ₂ k(H ₂ + H ₂) k _e (H ₃ +)	$\begin{array}{l} dn(H_2^+)/dt = \zeta_2 n(H_2) \\ dn(H_3^+)/dt = k(H_2^+ H_2) n(H_2^+)n(H_2) \\ = - dn(H_2^+)/dt \\ dn(H_3^+)/dt = - k_e(H_3^+) n(H_3^+) n_e \end{array}$
$\begin{array}{l} H+CR \rightarrow H^{+}+e \\ O+H^{+} \rightarrow O^{+}+H \\ O^{+}+H_{2} \rightarrow OH^{+}+H \end{array}$	ζ _H k(O H+) k(O+ H ₂)	$dn(H^{+})/dt = \zeta_{H} n(H)$ $dn(O^{+})/dt = k(O H^{+}) n(H^{+})n(O)$ $dn(OH^{+})/dt = k(O^{+} H_{2}) n(O^{+}) n(H_{2})$ $= -dn(O^{+})/dt$
$OH^+ + H_2 \rightarrow H_2O^+ + H$	k(OH+ H ₂)	$dn(H_2O^+)/dt = k(OH^+ H_2) n(OH^+) n(H_2)$ = -dn(OH^+)/dt
$H_2O^+ + H_2 \rightarrow H_3O^+ + H$	$k(H_2O^+ H_2)$	$dn(H_3O^+)/dt = k(H_2O^+ H_2) n(H_2O^+) n(H_2)$ = $-dn(H_2O^+)/dt$
$OH^+ + e \rightarrow O + H$ $H_2O^+ + e \rightarrow products$ $H_3O^+ + e \rightarrow products$	$k_e(OH^+)$ $k_e(H_2O^+)$ $k_e(H_3O^+)$	$\begin{array}{l} dn(OH^+)/dt = -k_e(OH^+) \; n(OH^+) \; n(e) \\ dn(H_2O^+)/dt = - \; k_e(H_2O^+) \; n(H_2O^+) \; n(e) \\ dn(H_3O^+)/dt = - \; k_e(H_3O^+) \; n(H_3O^+) \; n(e) \end{array}$

Example of W51 (2)

1. Diagnostics of the cosmic ionization rate

Molecular and Atomic Abundances in the Diffuse Cloud toward W51

Species	N(X) (cm ⁻²)	v_{LSR} (km s ⁻¹)	FWHM (km s ⁻¹)	References
н	$(1.39 \pm 0.3) \times 10^{21}$	6.2	5.6	1
H ₂	$(1.06 \pm 0.52) \times 10^{21}$	3-10		2
H_3^+	$(2.89 \pm 0.37) \times 10^{14}$	5.0	10.5	3
OH+	$(2.97 \pm 0.13) \times 10^{13}$	0-11		3
H_2O^+	$(6.09 \pm 0.96) \times 10^{12}$	0-11		3
C^+	$(4.0 \pm 0.4) \times 10^{17}$	0-11		4
CH	$(3.7 \pm 0.2) \times 10^{13}$	3-10		5
CO	$(2.81 \pm 0.21) \times 10^{15}$	4.8	9.6	3
Indriolo e	t al. 2012. ApJ 758, 83	3 –		

mean value of the cosmic ionization rate outside the Galactic center $\boxed{2} \approx 3.6 \ 10^{-16} \ \text{s}^{-1}$ (Indriolo et al. 2015)

 ζ_2 significantly larger than previously thought

+ N(HF) (1.63±0.12) x 10¹³ cm⁻² Sonnentrucker et al. 2015

Steady state formulae + guessed x_e from C⁺ : C⁺ / n_H ≈ x_e

from H_3^+ Indriolo et al. 2012:

 $\zeta_2 \approx (4.8 \pm 3.4) \ 10^{-16} \ \text{s}^{-1}$

from OH+

Indriolo et al. 2015 : $\varepsilon \approx 0.07$ $\zeta_2 \approx (5.6 \pm 1.0) \ 10^{-16} \ {\rm s}^{-1}$ in the (4, +11 km/s) VLSR range Different ζ_2 for different velocity ranges

Hartquist, Black & Dalgarno 1978 (MNRAS 185, 643) derived $\zeta_2 \approx 5 \ 10^{-17} \ s^{-1}$ from OH and HD in diffuse clouds

Example of W51 (3)

Example of W51 (4)

	CIL		
Lagnostics	of the	molecu	ar traction
		in created	

Steady state formulae + guessed x_e :

 $f_{\rm H_2} = \frac{2x_e k_e (\rm H_2O^+) / k(\rm OH^+ \mid \rm H_2)}{N(\rm OH^+) / N(\rm H_2O^+) - k(\rm H_2O^+ \mid \rm H_2) / k(\rm OH^+ \mid \rm H_2)}$

 $f_{\rm H_2} = 0.04 \pm 0.01 \text{ from OH}^+, \text{H}_2\text{O}^+ \text{ towards W51}$

From the observations of HI 21cm and proxies of H₂: CH, HF

N(CH)/N(H₂) = 3.6 10⁻⁸ (Sheffer+ 2008, ApJ 687, 1075)

N(HF)/N(H₂) \approx 1.2 10⁻⁸ (Indriolo+ 2013, ApJ 764, 188, Sonnentrucker+ 2015, ApJ 806, 49)

N(H) (cm ⁻²)	1.4 10 ²¹	N(H ₂) (cm ⁻²)	f
N(CH) (cm ⁻²)	3.7 10 ¹³	1.0 10 ²¹	0.6
N(HF) (cm ⁻²)	1.6 10 ¹³	1.3 10 ²¹	0.75

Example of W51 (5)

Steady state formulae + guessed x_e :

 $f_{\rm H_2} = 0.04 \pm 0.01$ from $\rm OH^+, H_2O^+$ towards W51

From the observations of HI 21cm and proxies of H₂: CH, CF

$$f_{{
m H}_2} \sim 0.6 - 0.7$$

The molecular fraction obtained from observations of H and

proxies of H₂ involves the integration over the cloud

see also discussion in Le Petit et al. 2016, AA585, A105

ArH⁺ chemistry (1)

Surprise! First rare gas containing molecule Schilke et al. 2014, AA566, A29

³⁶ArH⁺ and ³⁸ArH⁺ isotopes detected also at z=0.89 in absorption toward PKS1830-211 (Müller et al. 2015, A&A582, L4)

Transition shifted towards 350GHz

Detectable then from ground with ALMA.

Extensive grid of diffuse cloud models reported in Neufed + Wolfire 2016, ApJ 826, 183 (talk of M. Wolfire)

ArH⁺ essentially present in atomic gas

No single set of cloud parameters provides an acceptable fit to the observed abundances of ArH⁺, OH⁺, H_2O^+

2 components model may be appropriate (cf talk of M. Wolfire)

 n_{H} =50 cm⁻³, χ = 1, ζ_2 = 5x10⁻¹⁶ s⁻¹, A_{vtot} = 3

ArH⁺ chemistry (2)

ArH⁺ essentially in atomic gas

 \rightarrow Even simpler reaction schema (Ar, Ar⁺, H₂, H₂⁺, O, C)

Slow photodissociation (Alekseev+2007, Roueff+2014)

H?, He⁺? Exothermic charge exchange not included in the chemistry of Schilke+ 2014

Recombination of Ar⁺ (formula of Shull and van Steenberg based on formulae extrapolation). Not available from Badnell recent data base.

Dissociative recombination: upper limit available only from experiments Mitchell et al. 2005, J. Phys. B 38, challenge for theorists; no favorable crossing for recombination

Kirrander et al. 2006, PCCP 8, 247

Physics, chemistry and excitation of hydride molecules

Introduction

Molecular and thermochemical properties Some illustrations of the interplay between observations and chemical mechanisms

- New analysis of the N^+ + H_2 reaction and its isotopic variants

Paris, December 12, 2016

- Tracers of atomic gas: OH⁺ / ArH⁺
- Tracers of molecular gas : H_3^+ , CH, HF

Examples of (photo)chemical excitation (OH, H₃O⁺, NH₃)

Summary

boratoire d'Étude du Rayonnement et de la Matière en Astrophysique et Atmosphères

Suprathermal excitation of OH in the HH 211 outflow (1)

SPITZER Space Telescope observations Tappe et al. ApJ680, L117, 2008 Tappe et al. ApJ751:9, 2012 OH and H_2O emission present in the terminal shock region

Pure rotational : H_2 , HD, H_2O Highly excited levels of OH $E_{up} \approx 28200K$ above ground state

OH also populated at lower excitation as shown by intersystem transitions; no convincingly vibrationally excited transition detected.

Suprathermal excitation of OH in the HH 211 outflow (2)

IRS spectrum of the terminal shock Tappe et al. 2012

Higher possibly present excited transitions below 10µ not available in the IRS spectrum

Selective non thermal excitation of OH

A Einstein coefficient of high J transitions $\approx 10 - 400 \text{ s}^{-1}$ compared to H₂O A values of a few $\times 10^{-3} \text{ s}^{-1}$ and H₂ A values of $3 \cdot 10^{-11} - 3 \times 10^{-7} \text{ s}^{-1}$ too large critical densities for OH

Shock chemistry ?

≈ 29000 K endothermicity required to populate OH (J=63) : much larger than typical neutral fluid temperature

Suprathermal excitation of OH in the HH 211 outflow (3)

possible role of H_2O photodissociation photodissociation of H_2O through photons with E>9eV leads to ground state OH with high rotational excitation

Experiments :

weak featureless band at 7.4eV + structured emission at 9.5 eV (Cheng et al. 2011 JCP134, 06431)

Theory : The photodissociation of H_2O in its B band is a *prototype* for nonadiabatic reaction dynamics.

In addition to dissociation via the adiabatic pathway to the $OH(\tilde{A}^2\Sigma +) + H$ fragments, it also produces the $OH(X \ ^2\Pi) + H$ fragments through two nonadiabatic pathways:

the $\mathbb{B} \to X$ transition via two conical intersections (CI) and the $\mathbb{B} \to \tilde{A}$ transition via a Renner - Teller (RT) pair.

Suprathermal excitation of OH in the HH 211 outflow (4)

Proposed scenario:

UV-induced photodesorption of water ice from grain mantles and photodissociation of H₂O either in the gas phase or directly in the grain ice mantles are the primary sources of OH and H₂O. Ly α -dominated FUV radiation coming from a radiative shock; assumed x-section: 8 x 10⁻¹⁸ cm², photodesorption yield of 3-5 x 10⁻³. include other molecular emissions (HCO⁺, HCN, (v=1-0) CO, ...) **a nice challenge for future model**

Other sources with high J excited OH: TW Hya, other outflows (Tappe et al. 2012)

similar mechanism invoked in the observed prompt visible A-X emission of OH in comet Hyakutake (A Hearn et al. 2015, ApJ 150:5)

Widespread rotationnaly hot H_3O^+ in the Galactic ISM

Inversion transitions; A values between a few x 10^{-2} and 10^{-1} s⁻¹

Galactic Center: highly excited NH₃ also detected presence of warm gas

W31C : quiescent environment

chemical pumping scenario formation : $H_2 + H_2O^+ \rightarrow H_3O^+ + H_-\Delta E \approx 1.7eV$ wich fraction into internal energy? Highly excited non metastable levels relax rapidly to metastable levels (lower J=K) by spontaneous emission. Populations partially redistributed by inelastic collisions and background IR continuum radiation.

Destruction rapid through DR : $k_e \approx 10^{-6} n_e$

Widespread rotationnaly hot H_3O^+ in the Galactic ISM

Summary (1)

- basic thermochemical properties provide the general frame of the chemical processes at work
- Hydride families, supposedly involving simple formation reactions (with H₂), are very diverse and allow to address different aspects
 - atomic gas
 - molecular proxy
 - warm environments
 - probe of ionization sources
 - photochemistry
 - anomalous excitation resulting from photo-chemical mechanisms
- dedicated studies of elementary reactions the case of N⁺ + H₂: a nice example of state to state chemistry not yet fully understood
- ➡ full understanding requires complementary information from other molecules

Summary (2)

Density diagnostics: atomic / molecular Warm environments shocks turbulent Photons / X rays Source of ionization: UV / CR / Xrays coupling to magnetic field State to state chemistry : ortho/para

Role of surface processes

HI, OH⁺, ArH⁺/ CH, HF

endothermic reactions OH, H₂O, CH⁺, SH⁺

C, S, CI chemistries / H_3^+ , OH^+ , H_2O^+ , ArH^+ Role of internal energy H_2 , H_2O , H_2O^+ , NH_2 Nuclear spin dynamics in water ice H_2O Sulfur chemistry

Thanks to all collaborators

Maryvonne Gerin, ENS and Observatoire de Paris Tasko Grozdanov, Institute of Physics, Belgrade Kevin Hickson, Université de Bordeaux Jacques Le Bourlot, Observatoire de Paris Franck Le Petit, Observatoire de Paris Darek Lis, Observatoire de Paris Jean Christophe Loison, Université de Bordeaux Ronald McCarroll, UPMC and Observatoire de Paris

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique et Atmosphères