On the origin of C_4H and CH_3OH in protostars

A study of the physics and chemistry of embedded protostars

Johan E. Lindberg Astrochemistry Laboratory NASA Goddard Space Flight Center

> Paris 12 December 2016

> > in collaboration with:

Steven B. Charnley (NASA Goddard), Martin A. Cordiner (NASA Goddard),

Jes K. Jørgensen (Uni. of Copenhagen), Per Bjerkeli (Uni. of Copenhagen / Chalmers)

Outline

- Warm carbon-chain chemistry
- Line surveys of CrA and Ophiuchus
- C_4H and CH_3OH single-dish observations
- Future plans

Grain-surface chemistry

One grain in every 100 m³ at $n(H_2) = 10^4$ cm⁻³

Credit: Siemer et al. (2014), FaDi

Complex molecules in low-mass Class 0 protostars: *Hot corino* vs. Warm Carbon Chain Chemistry sources

Hot corino sources

- Complex organic molecules (CH₃OCH₃, HCOOCH₃, ...)
- Long pre-stellar phase: $C \rightarrow CO$ before freezeout
- $T_{ex} \sim 100$ K (COMs: high T_{evap})

• \geq 4 known sources:

WCCC sources

- Long carbon chain species (C₄H, HC₅N, C₆H⁻, ...)
- Short pre-stellar phase:
 C freezes out as atoms
- $T_{ex} \sim 30 \text{ K} (\text{CH}_4: \text{low } T_{evap})$

Sakai et al. (2009), ApJ, 697,769; Sakai & Yamamoto (2013), Chem. Rev., 113, 8981

Comparing hot corino and WCCC spectra

Formation of complex organic molecules (COMs)

Line survey in R CrA IRS7B shows different T_{rot}

COMs, O- and S-bearing species: 23–40 K

- H₂CO 40 K
- CH₃OH 28 K
- H₂CS 23 K
- SO 29 K
- SO₂ 38 K
 CS 24 K

WCCC and CN-species: 10–17 K

- CN 10 K
- DCN 11 K
- HC₃N 16 K
- C₂H 17 K
- *c*-C₃H₂ 17 K

Exception:

• CH₃CCH 33 K

Lindberg et al. (2015), A&A, 584, A28

Other signs of COM/WCCC differentiation

Distance to S 1 [AU]

Upcoming ALMA Cycle 4 (with ACA and TP array) to map two protostars in Ophiuchus with different level of external irradiation. Resolution: 1.6" (200 AU)

Proposed correlation between C_4H and CH_3OH in protostellar envelopes

No significant correlation even when excluding hot corinos

Normalised by $N(H_2O)_{ice}$ from *Spitzer*:

Graninger et al. (2016), ApJL, 819, 140

Proposed correlation between C₄H and CH₃OH in protostellar envelopes

- Why? CH_3OH forms on grains; C_4H forms from CH_4 , which forms on grains.
- What does it mean? Carbon chains and COMs are not mutually exclusive.
- Where? Correlation as long as CH₃OH comes from non-thermal evaporation hot corinos show no correlation.
- Suggests that CH_4 ($\rightarrow C_4H$) and CH_3OH evaporate simultaneously.

Why is this C₄H-CH₃OH correlation unexpected?

- Unknown non-thermal evaporation mechanism for CH₃OH; UV photodesorption not significant (Bertin et al. 2016).
- Would mean that CH₄ and CH₃OH evaporates at similar conditions despite different T_{evap} (~30 K vs. >70 K) and binding energies (1090 K vs. 5530 K).
- COMs and carbon chains often not spatially co-existent (see next slide).

Buckle et al. (2006), FaDi, 133, 63

Are C₄H and HC₃N correlated?

 HC_3N typically forms from $C_2H_2 + CN$ Dark clouds: C_4H forms from atomic C Protostars: C depleted, CH_4 required to form C_4H

MOPRA survey; Cordiner et al. (in prep.)

Survey of C_4H in 16 sources in Ophiuchus and Corona Australis

 C_4H observations at 85 GHz with the Arizona Radio Observatory 12 m telescope in May 2016

 CH_3OH observations at 218 GHz with the APEX 12 m telescope 2014-2015

In addition 15 sources from Graninger et al. (2016) and another 9 sources from the literature.

Assumptions (caveats)

- CH₃OH often non-LTE (subthermally excited).
- Use T(H₂CO) and well-behaved CH₃OH line to get a good value for N(CH₃OH).
- We get N(C₄H) from T(c-C₃H₂) in the same way.

Lindberg et al. (2016a;ApJL, 833, L14) Lindberg et al. (2016b; in press)

R CrA IRS7B APEX ASTE (Lindberg et al. 2015)

Results from our C₄H/CH₃OH survey

Lindberg et al. (2016a; ApJL, 833, L14)

- C₄H predominant at larger scales, where CH₄ has evaporated and reacted with C⁺.
- High-T CH₃OH in hot inner envelope.

- C₄H predominant at larger scales, where CH₄ has evaporated and reacted with C⁺.
- High-T CH₃OH in hot inner envelope.
- Accretion bursts release CH₃OH at larger scales.
- C₄H formation suppressed in inner envelope since C⁺ is destroyed by H₂O (Sakai & Yamamoto 2013).

- C₄H predominant at larger scales, where CH₄ has evaporated and reacted with C⁺.
- High-T CH₃OH in hot inner envelope.
- Accretion bursts release CH₃OH at larger scales.
- C₄H formation suppressed in inner envelope since C⁺ is destroyed by H₂O (Sakai & Yamamoto 2013).
- Low-T CH₃OH likely a tracer of previously hot gas (e.g. by accretion bursts).

Other surveys (future work)

- MOPRA/OSO multi-line (C₄H, HC₃N, and CH₃OH, HCO⁺, HCN, N₂H⁺, ...) 3 mm survey of >100 low-mass sources across luminosities (0.03-11L_{sun}) and evolutionary stages (pre-stellar to Class I).
- Targeted follow-up on C₄H, HC₃N, and CH₃OH in 30 most promising sources using Nobeyama 45 m scheduled in March 2017. L1512 (HC₃N and C₄H)⁵¹²

Cordiner et al. (2012), ApJ, 744, 131

Conclusions

- With a sample of 29 sources (not counting the lower/upper limits), we observe no correlation or anti-correlation between C₄H and CH₃OH in embedded protostars.
- Further observations needed to understand the importance of dust mantle chemistry: Nobeyama 45 m observations to expand search for C₄H, HC₃N, and CH₃OH to 30 additional northern sources in different environments and stages of evolution is upcoming.
- High-resoultion (e.g. NOEMA, ALMA) mapping of more sources in WCCC species like C₄H in many different sources is crucial but time-consuming.