Hydrides in decaying 2D hydrodynamic turbulence

Pierre Lesaffre,

F. Levrier, B. Godard

V. Valdivia, N. Dziourkevitch,

A. Gusdorf, M. Gerin

G. Momferratos, E. Falgarone, G. Pineau des Forêts

Motivation

- The diffuse ISM contains a lot of complex molecules, some of them excited (e.g. bright CO, warm H2), amongst them: hydrides (OH, H₂O, CH+, ...)
- Large scale turbulent motions dissipate at small scales, with intense bursts of heating.
- How much of the molecular content can be explained by this localised heating?
- How can we use steady-state shock models to reproduce the molecular yields?

CH⁺ formation channels: means to overcome the (C⁺,H₂) barrier.

- H_3^+ : PDR models and Cosmic Rays ζ
- Ion-neutral drift
 - C-type shocks (Flower et al. 1986)
 - Turbulent Dissipation models (Godard et al. 2009)

• Warm H2

- Turbulent diffusion (Lesaffre et al. 2007)
- Turbulent transport (Valdivia et al. 2016)

Excited H2

- J-type shocks (here)
- PDRs via pumping

Dissipation in decaying turbulence. Isothermal 3D MHD (Mach 4, ABC)

~1 pc

$$n_H \sim 100/cm^3$$

$$< u^2 > \sim < b^2/\rho >$$

Re=LU/
$$\nu \sim 2.10^7 \ 10^3$$

$$Re_{m}=LU/\eta \sim 2.10^{17} 10^{3}$$

 (1020^3 pixels)

Heating nature in decaying MHD turbulence

Red: Ohmic, Green: Viscous shear, Blue: Viscous compression

(Momferratos PhD thesis:

DUMSES simulations with careful treatment of vicous and resistive dissipation)

Decaying turbulence (2D runs)

 $n_{\rm H} \sim 100/{\rm cm}^3$

ACTUAL ν

No B field.

10¹⁶ cm

Decaying 2D turbulence from U_{rms}~2 km/s (way above average, But think intermittency)

Coupling chemistry and MHD: CHEMSES = DUMSES + Paris-Durham

10¹⁶ cm

ACTUAL viscous dissipation

32 species, 7 H₂ levels 1024² pixels,

Uniform Irradiation: $G_0=1$, Av=0.1 $n_H \sim 100/\text{cm}^3$ => molecular, but without CO.

Hydrides produced by dissipation of 2D turbulence

G₀=1 Av=0.1

Find the ridges of dissipation (using DISPERSE, by Thierry Sousbie)

Find steady-state shocks (local fit of adiabatic fronts)

Affect each point to a shock (=> define background and shocked regions)

Use steady shock models in the shocked region e.g. here: mass density (log₁₀ n_H)

The map of OH relative abundance (chemical equilibrium used outside shocks)

Fraction of hydrides in background and shocked region

Model performance on average for hydrides

What really matters?

- Entrance conditions
 - Temperature (Mach number => compression)
 - Chemical equilibrium
 - Entrance H2 levels (ortho/para ratio)
 - Entrance H2 fraction (H/H2)
- Shock extent
- Trajectory of the shock-(oblique-?-Normal ?)-
- Gurvature-
- Sideways gradients-
- Compression / dilatation along the shock
- Intrinsic unsteadyness (matters for background)

Importance of H₂ excitation

Solid: Hierl et al. (1997) \sim exp (- 4540 K / T) Dashed: Agúndez et al. (2010) state \sim exp [- (4830 K - E_{vJ}^{H2} /kb) / T]

Conclusions

- Many hydrides are sensitive to dissipation (amongst others, OH, H₂O and CH+).
- This chemistry requires extreme spatial resolution, and is absent from current large scale simulations.
- Distributions of steady-shocks are a good tool to model the sub-grid molecular chemistry.
- H₂ excitation in J-shocks can be important for the CH_n⁽⁺⁾ chain.
- <u>TODO</u>:

check B field and ambipolar diffusion.

Prospects

Intermittent statistics of the dissipation

3D simulations

Dissipation strength

=> Molecules
Formation + excitation

1D simulations

CO map <u>Validation with 2D simulatio</u>

Thanks!

