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Motivation

The diffuse ISM contains a lot of complex molecules,
some of them excited (e.g. bright CO, warm H2),
amongst them: hydrides (OH, H2O, GERe)

Large scale turbulent motions dissipate at small scales,

with intense bursts of heating.

How much of the molecular content can be explained
by this localised heating ?

How can we use steady-state shock models to
reproduce the molecular yields ?



CH’ formation channels:
means to overcome the (C+,H2) barrier.
» H ": PDR models and Cosmic Rays ¢

= Jon-neutral drift

= C-type shocks (Flower et al. 1986)
= Turbulent Dissipation models (Godard et al. 2009)

= Warm H2

= Turbulent diffusion (Lesaffre et al. 2007)
= Turbulent transport (Valdivia et al. 2016)

» Excited H2

= J-type shocks (here)
= PDRs via pumping



Dissipation in decaying turbulence.

Isothermal 3D MHD (Mach 4, ABC)
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(1020° pixels)

Red: Ohmic, Green: Viscous shear, Blue: Viscous compression

(Momferratos PhD thesis:
DUMSES simulations with careful treatment of vicous and resistive dissipation)



Decaying turbulence (2D runs)

n ~ 100/cm’
H

Comgpressible blue) and vortical

ACTUAL v
No B field.

10*° cm

Decaying 2D turbulence from U _ ~2 km/s
(way above average, But think intermittency)



Coupling chemistry and MHD:
CHEMSES = DUMSES + Paris-Durham

10*° cm

ACTUAL
viscous dissipation

32 species,
7 H_levels

10247 pixels,

Uniform Irradiation:
Gozl, Av=0.1

i, = 100/cm?

=> molecular, but
without CO.

Map of OH



Hydrides produced
by dissipation of 2D turbulence
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Find the ridges of dissipation
(using DISPERSE, by Thierry Sousbie)

Dissipation (cgs), epoch |




Find steady-state shocks

(local fit of adiabatic fronts)
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Affect each point to a shock

(=> define background and shocked regions)

_Shock ID number




Use steady shock models in the shocked region
e.g. here: mass density (log. n )

Md__el nH . Actual nH




The map of OH relative abundance

(chemical equilibrium used outside shocks)
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Fraction of hydrides
in background and shocked region

B Backgd |-
B Shocks




Model performance on average
for hydrides




What really matters ?

Entrance conditions

= Temperature (Mach number => compression)
= Chemical equilibrium

= Entrance H2 levels (ortho/para ratio)

= Entrance H2 fraction (H/H2)

Shock extent

Trajectory cf the shock (cblique ? Normal ? )
Curvature

Sideways gradients

Compressicn / dilataticn along the shock

Intrinsic unsteadyness (matters for background)



Importance of H excitation

Solid: Hierl et al. (1997) ~exp (-4540K/T)
Dashed: Agiindez et al. (2010) state ~exp [ - (4830 K-E_™ /kb) / T ]




Conclusions

= Many hydrides are sensitive to dissipation (amongst
others, OH, HZO and CH+).

= This chemistry requires extreme spatial resolution,
and is absent from current large scale simulations.

= Distributions of steady-shocks are a good tool to
model the sub-grid molecular chemistry.

« H_excitation in J-shocks can be important for the
CH ® chain.

= TODO:
check B field and ambipolar diffusion.




Prospects
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Thanks !
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