Evaluation of molecular hydrogen tracers

Maryvonne Gerin, Harvey Liszt, Jérôme Pety, Patrick Boissé, Edwin Bergin, Edwige Chapillon, Edith Falgarone, Benjamin Godard, Pierre Gratier, Viviana Guzman, Dariusz Lis, David Neufeld, and Paule Sonnentrucker

Molecular hydrogen in the diffuse ISM

- Direct H₂ measurements in the UV or the near-IR toward moderately reddened massive stars
- It is interesting to find more species that are well mixed with H₂ and can be used as surrogates over a wider source sample
- Several hydrides have been proposed : CH, HF, OH, H₂O based on direct comparison of column densities and analysis of the chemistry
- Other molecules like HCO⁺, CCH can be calibrated relative to the hydrides

Tracing the H₂ fraction

H/H₂ transition

Valdivia et al. 2016 A&A

- Sharp increase of the H_2 fraction near AV ~ 0.1 in $G_0 = 1$
- When H₂ is detected, the integrated H₂ fraction is already significant (> 0.1) for nearby stars
- CO emission is detected for Av
 > 0.5 1
- Molecule absorption can be detected in regions with no or weak CO emission

Tracing the H₂ **fraction**

• Global H_2 tracers = molecules with a nearly constant abundance relative to H_2 (well mixed)

CH, HF, OH, H_2O , HCO^+ , CCH

- Provide the integrated H_2 column along the line of sight for each velocity feature
- Characteristic scales probed are ~ few pc for local sight-lines, up to ~ 100pc for Galactic Plane sources
- Averaging effect along the line of sight
- Local H_2 tracers = species with enhanced abundance in a special range of H_2 fraction

CH as a tracer of H

courtesy B Godard using the Meudon PDR code

• CH is well correlated with H₂ with a scatter

 $N(CH)/N(H_2) \sim 3.6 \ 10^{-8}$

• Other species like CN show non linear correlations

 H_{2}

CH

Levrier et al. 2012

PCA analysis of hydride absorption spectra

Separation of different families :

- "HI" : ions like CH^+ , $OH^+ \& H_2O^+$
- CH & H₂O diffuse molecular gas
- H₂S & NH₃ molecular gas with lower filling factor (higher density). Similar behavior as CN

Gerin, Neufeld & Goicoechea 2016 ARAA

Neutral hydrides as H₂ tracers : CH, HF OH & H₂O

- Additional species with different sensitivity to the H₂ column
- HF is formed in the exothermic reaction F + H₂:
- Destroyed by photons and by reaction with C⁺ (producing CF⁺)
- HF/H, scales as ~ 2xF/H
- Direct comparison :

 $HF/H_{2} \sim 0.5 - 1.1 \times 10^{-8}$ Consistent with models at moderate f(H₂)

Talk by R. Monje

Indriolo et al. 2013, Sonnentrucker et al. 2015

CH & HF

Using CH/H₂ = 3.6 10^{-8}

 $HF/H_{2} \sim 0.6 - 2.4 \times 10^{-8}$

consistent with models & direct measurement

Talk by R. Monje

Wiesemeyer et al. 2016, Godard et al. 2012 Emprechtinger et al. 2012, Kawaguchi et al. 2016

Herschel Observations of HF & H₂O

 $N(H_2O) = 4 N(p-H_2O)$ $N(H_2O) / N(HF) \sim 1.5$; with a real scatter $N(H_2O)/N(H_2) \sim 2.2 \ 10^{-8}$

Sonnentrucker et al. 2015

Secondary tracers

- Hydride submillimeter lines are good tracers but relatively difficult to access
- Hydride lines in the cm domain are very weak
- It is interesting to use other species with strong absorption lines at lower frequencies (~ 100GHz) where the sky is more transparent : HCO⁺, CCH

Comparisons with CH

Gerin et al. 2010, Liszt 2017

Comparison with H₂O & OH

Liszt 2017, Lucas & Liszt 1996

Abundances relative to H₂

 $N(H_2)$ is derived from N(CH) with CH/H₂ = 3.6 10⁻⁸ for Galactic plane sightlines or from E(B-V) & N(HI) for QSO sight-lines

Searching for diffuse H₂ : some numbers

Use a combination of species to probe a wide range of column densities

	HF 1-0	p-H2O 111-000	CH	HCO+ 1-0	HOC+ 1- 0	CCH	OH
Freq (GHz)	1232.5	1113.3	532.76	89.189	89.487	87.317	2510
N/ʃtdv cm ⁻² /kms ⁻¹	2.4E12	2.33E12	3.64E13	1.12E12	2.15E12	6.53E13	2.5E13
N(H _₂)/∫τd∨ cm⁻²/kms⁻¹	1.9E20	3.3E20	1.0E21	4.0E20	7.1E22	1.6E21	2.5E20

HCO⁺ is the most sensitive probe in the mm domain

HCO+ and p-H₂O probe the same range of H₂ columns

Investigating the chemistry : comparing the ions HOC⁺ & HCO⁺

 $C^+ + H_2O \rightarrow HCO^+ \& HOC^+$

- Destruction by e- (both) and by H₂ (HOC⁺)
- Additional production routes for HCO⁺ through e.g. CH₃⁺
- Fairly constant abundance ratio of 0.01

Conclusions

- Good tracers of diffuse H_2 with an abundance scatter of ~ 0.15 dex (factor of 1.4) CH; HF, p- H_2O , HCO⁺, CCH , OH, ...
- Abundances are ~ constant in the Galactic Plane but variations are expected with metallicity, FUV radiation field, CR ionization rate ... The Galactic Center region may be different !
- Probe these species over a wider range of conditions. Direct observations of $\rm H_{2}$ in the IR ?
- Continue to investigate the chemistry, e.g. the tight correlation between OH, H₂O and HCO⁺ in the context of coupled dynamical/chemical models

CO in diffuse clouds

- CO is one of the main tracer of molecular gas, through the J= 1-0 line at 115.27 GHz. At large scales (> pc)
 - $N(H_2)$ (cm²)= X_{co} ICO (Kkms¹) with X_{co} the CO to H_2 conversion factor.

 $- X_{c0} \sim 2 \times 10^{20} \text{ cm}^{-2}$ /Kkm/s

- It is not easy to separate "diffuse CO" from "dense CO" because the J=1-0 line is easily excited in warm diffuse gas even if the CO abundance is relatively low (10⁻⁶ to 10⁻⁵ relative to H₂ N(CO) > 10¹⁵ cm⁻²)
- In low Av regions, CO formation is driven by turbulence. See B Godard talk

Calibration of CO/H₂ across the Galactic plane : the W31C example

- X_{c0} ~ 1 2 10²⁰ cm²/Kkms⁻¹
- Consistent with other determinations
- Density of the diffuse molecular gas :

n(H) ~ 130 cm⁻³

Volumne filling factor
 ~ 3%