Primordially hydridic Earth

Viacheslav Zgonnik, Hervé Toulhoat, Vladimir Larin, Nikolay Larin

- · Clearly shows separation of elements by their IP
- Outliers are due to use of only Earth's crust composition
- Tested with success for other planets, Moon and asteroids
- Described by a Boltzmann distribution depending on the distance to the protosun
- Predicts high initial content of hydrogen
- Earth currently has about 4% by weight of hydrogen.
- It is mainly combined as hydrides and partly dissolved into other phases

http://arxiv.org/abs/1208.2909v2

Non-Ionizing UV (< 7 eV) Photochemistry of Cosmic Ice Analogs of Ammonia

Radiolysis involves electron excitation due to particle radiation in addition to all ionization

- reactions initiated by cations
- production of low-energy electron cascade
- non-uniform distribution of reaction intermediates, non-selective chemistry leading to multiple reaction products

Photochemistry involves electron excitation without ionization

Islem Bouhali Soumaya Bezzaouia Mourad Telmini

Christian Jungen

Theoretical study of Rydberg states of HeH⁺ ion using the Halfium model

Presented by: Islem Bouhali

HeH⁺ molecular ion in Born-Oppenheimer approximation

Combination of the Variational R-matrix method and of the Generalized Multichannel Quantum Defect Theory

Telmini and Jungen, Phys. Rev. A 68 062704 (2003).

2

[1] I. Bouhali, S. Bezzaouia, M. Telmini and Ch. Jungen, EPJ Web of Conferences. 84 04004 (2015). [2] I. Bouhali, S. Bezzaouia, M. Telmini and Ch. Jungen, Phys. Rev. A, 94, 022516 (2016). [3] M. Jungen and Ch. Jungen, Mol. Phys. 113, 2333 (2015).

3

 $NH^{+} + H_{2} \rightarrow NH_{2}^{+} + H$ $NH^{+} + H_{2} \rightarrow H_{3}^{+} + N$ $NH_{2}^{+} + H_{2} \rightarrow NH_{3}^{+} + H$

POSTER 21 Štěpán Roučka

 $O^{+} + H_{2} \rightarrow OH^{+} + H$ $O^{+}(^{4}S) + H_{2} \rightarrow H^{+} + OH$ $O^{+}(^{4}S) + H \rightarrow H^{+} + O(^{3}P_{0})$

E-

An investigation of the argonium emission from the Crab Nebula

Felix Priestley, Mike Barlow, Serena Viti University College London

Argonium (ArH⁺) discovered in emission in Crab Nebula by Barlow et al. (2013), followed by detection in absorption in ISM by Schilke et al. (2014) and towards extragalactic sources by Müller et al. (2015).

- Interstellar ArH⁺ requires low molecular hydrogen fraction to form, situation in Crab Nebula less clear due to X-ray synchrotron emission and probable high charged particle flux.

- Combination of photoionisation and photodissociation region modelling used to investigate molecular abundances in Crab Nebula knots/filaments, and compare predicted line emission to Herschel SPIRE FTS data.

Poster 23: Formation of Solid H₂-Bodies

 H_2 Phase Transition + Gravity = Substellar H_2 Bodies

Motivation

- Formation of solid H₂
 - During star formation
 - In cometary knots
 - In cold disks
- Solid H₂ as dark baryons

Conclusions

- Fluids in a phase transition
 - Always gravitationally unstable
 - Jeans length vanishes
- Phase transition + gravity: Gas → grains → planetoids

Ideal gas + gravity

Formation of gaseous He-planetoid

Phase transition

Formation of solid H₂-oligomers

Phase transition + gravity

Formation of solid H₂-planetoid

Andreas Füglistaler & Daniel Pfenniger

Geneva Observatory, University of Geneva

MgH₂ in space and interaction with H

Carla Maria Coppola Università degli Studi di Bari, Dipartimento di Chimica Via Orabona 4, I-70126, Bari, Italy carla.coppola@uniba.it

1- Thermochemistry **2- Electronic structure** 3- Stability & chemical bonds MgH, vs MgH in cold ISM (?)

Agenzia regionale per la tecnologia e l'innovazione

Optical observations of IR bubbles S73 and S74

Soňa Ehlerová¹ & Lenka Zychová²

¹Astronomical Institute, Czech Academy of Sciences ²Faculty of Science, Masaryk University, Brno

The Impetus project:

Using the supercomputer ABACUS for the HPC of Radiative Tables for accretion onto a galaxy Black Hole

José M Ramírez-Velasquez (IVIC), Jaime Klapp (ININ), <u>Ruslan Gabbasov</u> (UAEH), Fidel Cruz (UAM-A), Leonardo Di G. Sigalotti (UAM-A)

SMBH Disk Model:

$$\begin{split} M_{BH} &= 10^8 \text{ solar masses} \\ R_{iD} &= 3R_{Sch} = 3^* 2GM_{BH}/c^2 \\ R_{oD} &= 10R_{Sch} \\ T &= 1.3 \times 10^5 - 4 \times 10^5 \text{ K} \\ \text{Initial SED for the disk} \end{split}$$

Abacus	de Alto Rendimiento del Departamento d	olicadas y Computo le Matemáticas
INICIO ACERCA	A DE ABACUS INFRAESTRUCTURA CONVOCATORIA 2016	6 RESULTADOS CONTACTO
inpetus. Pho	Scolonisation + SPH, numerical sinit	diadons of astrophysical
objects Digital Tables of	of the accretion of matter onto SMBH in th	e center of galaxies
Digital Tables of Calculation	of the accretion of matter onto SMBH in th	e center of galaxies
Digital Tables of Calculation	of the accretion of matter onto SMBH in th	te center of galaxies Size (MB) 47
Digital Tables of Calculation	of the accretion of matter onto SMBH in th File Name New_DB_SED1_2_short.gz New_DB_SED1_2_short.gz	Size (MB) 47
Digital Tables of Calculation	of the accretion of matter onto SMBH in th File Name New_DB_SED1_1_short.gz New_DB_SED1_2_short.gz	Size (MB) 47 47 47 47 47
Digital Tables of Calculation	of the accretion of matter onto SMBH in th File Name New_DB_SED1_1_short.gz New_DB_SED1_2_short.gz New_DB_SED1_3_short.gz New_DB_SED1_3_short.gz	Size (MB) 47 47 47 47
Digital Tables of Calculation	File Name File Name New_DB_SED1_2_short.gz New_DB_SED1_3_short.gz New_DB_SED1_1_short.gz New_DB_SED1_1_short.gz	Size (MB) 47 47 47 47 47 47 47 47 47

http://www.abacus.cinvestav.mx/impetus

1

Ortho-para ratio of H₂O in molecular clouds: development of enrichment techniques to investigate the role of cold grains

T. Putaud, X. Michaut, M. Bertin, G. Féraud, R. Dupuy, P. Jeseck, L. Philippe, J.-H. Fillion and D. Lis

COMPLETE HYDROGENATION OF A PAH CATION

S. Cazaux^{1,2}, L. Boschman^{1,3}, N. Rougeau⁴, G. Reitsma³, R. Hoekstra^{3,5}, D. Teillet-Billy⁴, <u>S. Morisset⁴</u>, M. Spaans¹, and T. Schlathölter³

(1) Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL 9700 AV Groningen, The Netherlands. (2)Leiden Observatory, Leiden University, P.O. Box 9513, NL 2300 RA Leiden, The Netherlands. (3)Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands. (4)Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris-Sud, Université Paris Saclay, F-91405 Orsay, France.

+5H + 11H et +17H more stable?

