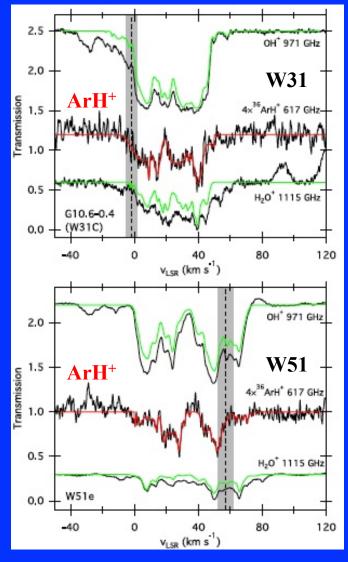
Analysis of ArH⁺, H₃⁺, OH⁺, and H₂O⁺ Observations to Estimate the Cosmic-Ray Ionization Rate Using Comprehensive Diffuse Cloud Models

1)ArH⁺ - history, formation/destruction

2)Models – geometry, physical processes

3)Results and comparisons


Wolfire, M.G & Neufeld, D. Thanks! NASA/ADAP

Motte et al. 2010 Rosette

Argonium - ArH⁺

Observed by PRISMAS and HEXOS in absorption towards SgrB2 but unidentified – Muller et al. 2013

Observed in emission in Crab Nebula identified as ³⁶ArH⁺ - Barlow et al. 2013

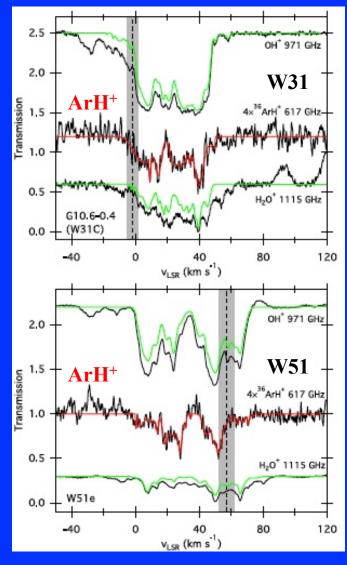
See also Poster 22 on ArH⁺ from Crab Nebula

Schilke et al. 2014

Argonium - ArH⁺

Observed by PRISMAS and HEXOS in absorption towards SgrB2 but unidentified – Muller et al. 2013

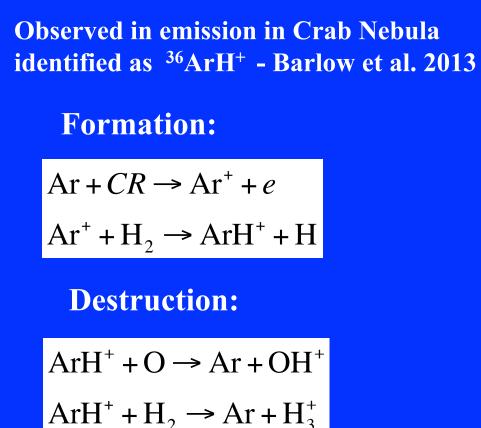
Observed in emission in Crab Nebula identified as ³⁶ArH⁺ **- Barlow et al. 2013**

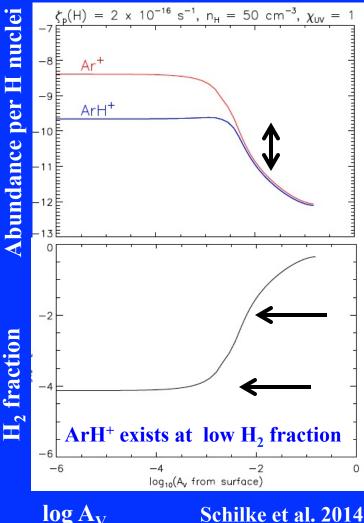

Formation:

 $Ar + CR \rightarrow Ar^{+} + e$ $Ar^{+} + H_{2} \rightarrow ArH^{+} + H$

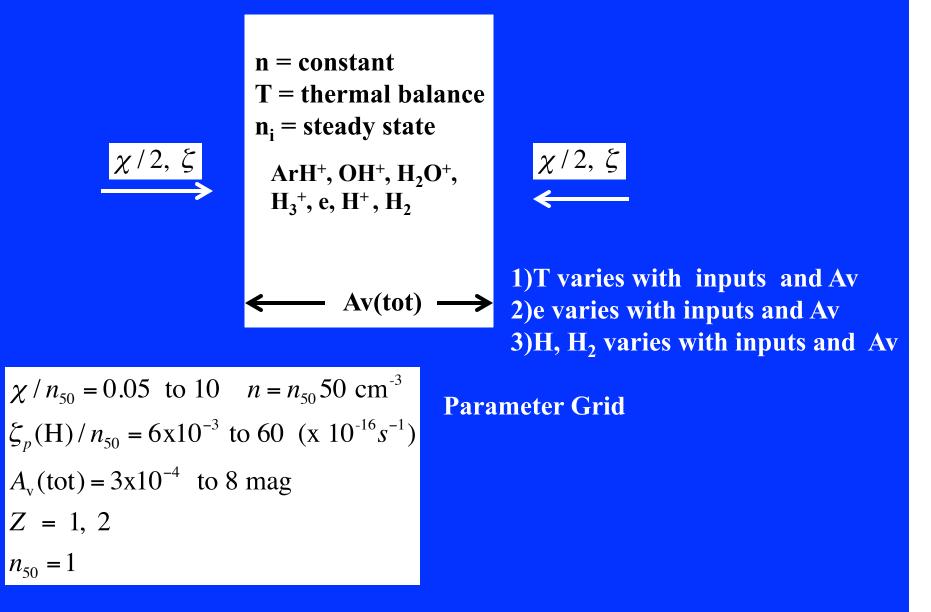
Destruction:

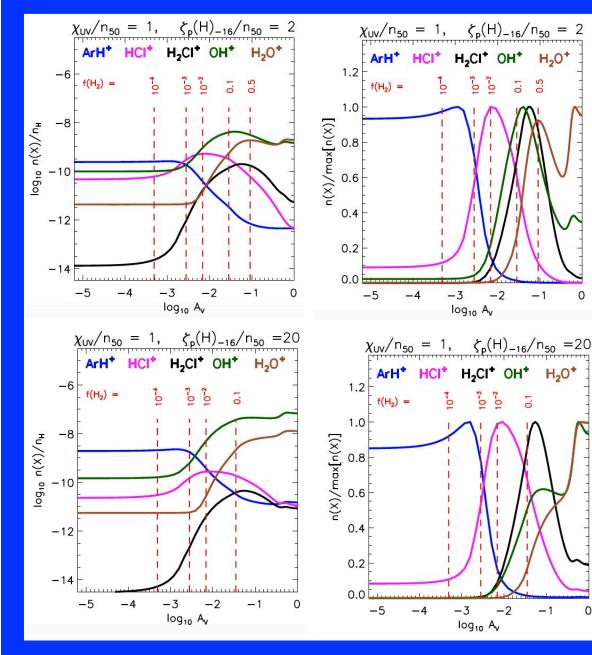
 $ArH^{+} + O \rightarrow Ar + OH^{+}$ $ArH^{+} + H_{2} \rightarrow Ar + H_{3}^{+}$


See also Poster 22 on ArH⁺ from Crab Nebula


Schilke et al. 2014

Argonium - ArH⁺


Observed by PRISMAS and HEXOS in absorption towards SgrB2 but unidentified – Muller et al. 2013 2- Sided PDR model $A_V(tot) = 0.3$


See also Poster 22 on ArH⁺ from Crab Nebula

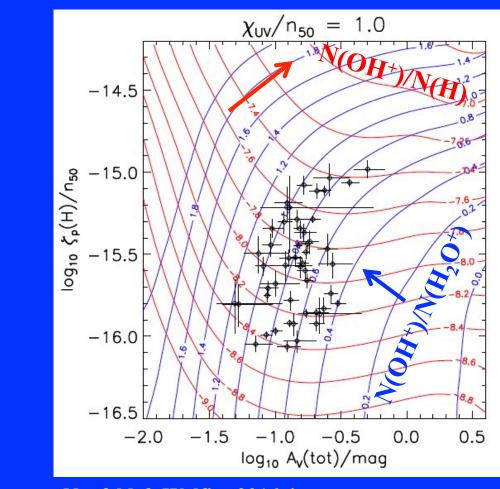
Two-Sided PDR Models

ArH⁺, HCl⁺, H₂Cl⁺, OH⁺, H₂O⁺ Neufeld & Wolfire 2016

 $H_{2}O^{+}$ $H_{2}Cl^{+}$ OH^{+} HCl^{+} ArH^{+} $f(H_{2})$

ArH⁺ in small clouds of Av(tot) < 0.02 and $f(H_2) \sim 10^{-5} - 10^{-2}$

OH⁺, H₂O⁺ in larger clouds and higher f(H₂)


Higher CRIR more ArH⁺, OH⁺, H₂O⁺

OH⁺, H₂O⁺ 22 samples

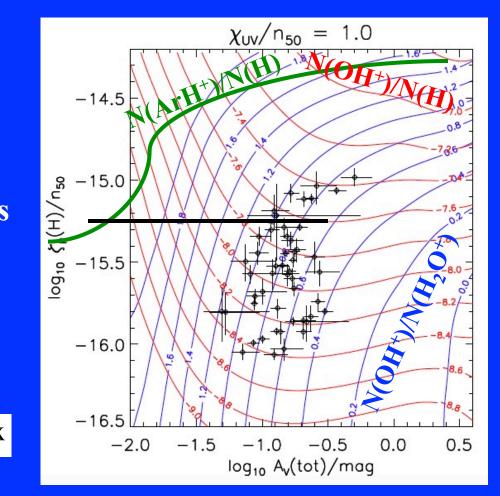
OH⁺, H₂O⁺, ArH⁺ 15 samples H₃⁺ 7 samples

One component model All HI in OH⁺, H₂O⁺ (large) clouds

Indriolo et al. 2015: OH⁺, H₂O⁺ Winkel et al. 2017: HI

Neufeld & Wolfire 2016, in prep

OH⁺, H₂O⁺ 22 samples


OH⁺, H₂O⁺, ArH⁺ 15 samples H₃⁺ 7 samples

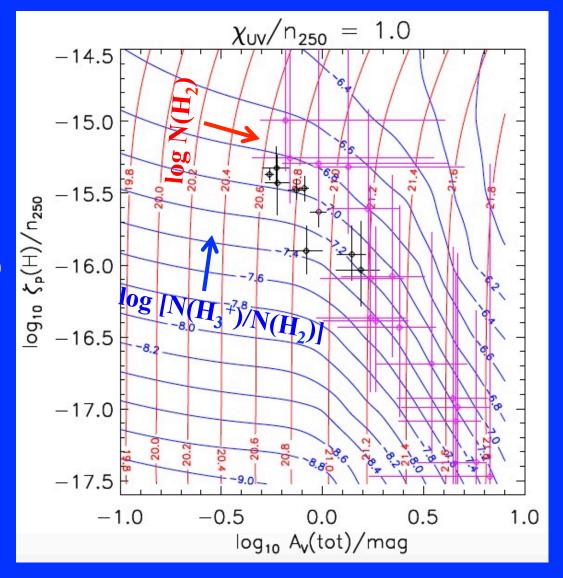
Two component model Large OH⁺, H₂O⁺ cloud and small ArH⁺ cloud

Both have the same cosmic-ray ionization rates

Up to 50% HI in ArH⁺ clouds with remaining HI in OH⁺, H₂O⁺ clouds.

 $\Delta [\log_{10} \zeta_p(H) / n_{50}] = 0.15 \text{ dex}$

Neufeld & Wolfire 2016, in prep


H₃⁺ Clouds

Indriolo & McCall 2012: 23 H₃⁺ clouds

6 UV N(H₂) observations

17 N(H₂) from CH, E(B-V)

Albertsson et al. 2014: 3 H₃⁺ clouds

Neufeld & Wolfire 2016, in prep

7 samples H_3^+ with N(H₂) and n from observations

$< \log_{10}[\zeta_p(H)] >$ (Present Work)	-15.63 ± 0.09
$10^{<\log_{10}[\zeta_p(H)]>}/10^{-16} \text{ s}^{-1}$ (Present Work)	2.3 ± 0.6
$10^{\langle \log_{10}[\zeta_p(H)] \rangle} / 10^{-16} \text{ s}^{-1}$ (IM12)	1.9
$\sigma_{\text{Best Estimate}}[\log_{10}[\zeta_p(\text{H})]]$ (Present Work)	0.23
$\sigma_{\text{True}}[\log_{10}[\zeta_p(\text{H})]]$ (Present Work)	0.09

37 samples OH⁺, H_2O^+ with ArH⁺ and $\chi/n_{50} = 1$

$< \log_{10}[\zeta_p(H)/n_{50}] >$ (Present Work)	-15.34 ± 0.05
$10^{\langle \log_{10}[\zeta_p(H)]/n_{50}\rangle}/10^{-16} \text{ s}^{-1}$ (Present Work)	4.6 ± 0.5
$10^{<\log_{10}[\zeta_p(H)]/n_{50}>}/10^{-16} \text{ s}^{-1}$ (I15)	1.8
$\sigma_{\text{Best Estimate}}[\log_{10}[\zeta_p(H)/n_{50}]]$ (Present Work)	0.29
$\sigma_{\text{True}}[\log_{10}[\zeta_p(\text{H})/n_{50}]]$ (Present Work)	0.23

7 samples H_3^+ with N(H₂) and n from observations

$< \log_{10}[\zeta_p(H)] >$ (Present Work)	-15.63 ± 0.09
$10^{<\log_{10}[\zeta_p(H)]>}/10^{-16} \text{ s}^{-1}$ (Present Work)	2.3 ± 0.6
$10^{\langle \log_{10}[\zeta_p(H)] \rangle} / 10^{-16} \text{ s}^{-1}$ (IM12)	1.9
$\sigma_{\text{Best Estimate}}[\log_{10}[\xi_p(\text{H})]]$ (Present Work)	0.23
$\sigma_{\text{True}}[\log_{10}[\zeta_p(\text{H})]]$ (Present Work)	0.09

37 samples OH⁺, H₂O⁺ with ArH⁺ and $\chi/n_{50} = 50/33$, n = 33

$< \log_{10}[\zeta_p(H)/n_{50}] >$	(Present Work)	-15.34 ± 0.05
$10^{<\log_{10}[\zeta_p(H)]>}/10^{-16} \text{ s}^{-1}$	(Present Work)	2.2 ± 0.3
$10^{<\log_{10}[\zeta_p(H)]/n_{50}>}/10^{-16} \text{ s}^{-1}$	(I15)	1.8
$\sigma_{\text{Best Estimate}}[\log_{10}[\zeta_p(\mathrm{H})/$	<i>n</i> ₅₀]] (Present Work)	0.29
$\sigma_{\rm True}[\log_{10}[\zeta_p({\rm H})/n_{50}]]$	(Present Work)	0.23

Conclusions

We analyzed OH⁺, H₂O⁺, ArH⁺ and HI observations using our 2-sided PDR model to find CRIR/n₅₀ = $4.6\pm0.5\times10^{-16}$ s⁻¹ (with $\chi/n_{50} = 1$).

With n = 33, CRIR = 2.2±0.3x10⁻¹⁶ s⁻¹

We analyzed H_3^+ and H_2 observations using our 2-sided PDR model to find CRIR = $2.3 \pm 0.6 \times 10^{-16} \text{ s}^{-1}$

Both have quite small cloud-to-cloud variations

Diffuse atomic and diffuse molecular estimates are in agreement