THE HYDRIDE TOOLBOX

Origin Of CH⁺ In Diffuse Molecular Clouds

<u>Outline</u>

CH+ in the diffuse ISM
 Hybrid approach for the chemistry
 Warm H₂ and ion-neutral drift
 Summary

V. Valdivia, B. Godard, P. Hennebelle, M. Gerin, P. Lesaffre, and J. Le Bourlot

(A&A in press)

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

THE HYDRIDE TOOLBOX

valeska.valdivia@cea.fr

DE LA RECHERCHE À L'INDUSTRIE

77

CH⁺ in the diffuse ISM

- Simple hydride
- Easily **destroyed**
- Main formation path is **highly endothermic** $C^+ + H_2 \rightarrow CH^+ + H$ ($\Delta E/k = -4300 \text{ K}$).
- Classical PDR models predict low abundances in the diffuse ISM
- But observations reveal relatively high abundances

Name	Methylidyne cation
Common Formula	CH+
Mass 🔒	13.00728 <i>a.m.u</i>
Charge	1
CAS 🕤	24361-82-8
Inchi	InChI=1S/CH/h1H/q+1
InchiKey	WVVLBIYUCXYYEU-UHFFFAOYSA-N
Electronic State	
Excitation	Ground State

THE HYDRIDE TOOLBOX

valeska.valdivia@cea.fr

Impact of the turbulent mixing CNM/WNM on the chemistry Impact of the multiphase structure

UPMC-Paris December 2016

CH⁺ In The Diffuse ISM: Previous Attempts

PDR Models	Dissipation of Turbulence	Ion-Neutral Drift	
Stationary plane-parallel slabs illuminated from one or two sides	Burst of dissipation L~10 AU ; t~100 yr	$T_{\text{eff}} = \frac{m_i T_n + m_n T_i}{m_i + m_n} + \Delta T_i$ $\Delta T = \frac{\mu}{3k} v_{\text{d}}^2$	
$1e+14$ $1e+13$ $1e+13$ $1e+12$ $1e+12$ $1e+11$ $1e+10$ $1e+20$ $1e+21$ $1e+21$ $1e+22$ $N_{H} (cm^{2})$	$f_{U} = 10^{-10} \text{ models}$ $ie+14$ $f_{U} = 10^{-23}$ $ie+13$ $ie+14$ $f_{U} = 10^{-23}$ $f_{U} = 10^{-2$	$ \frac{N_{\rm CH^+}}{(10^{13}{\rm cm^{-2}})} + \frac{N_{\rm H}}{(10^{21}{\rm cm^{-2}})} + \frac{\bar{v}_{d,99}}{({\rm kms^{-1}})} \\ \frac{1.1}{1.1} + \frac{2.2}{2.2} + \frac{2.1}{3.0} \\ 1.1} + \frac{1.2}{1.2} + \frac{2.3}{2.3} \\ 0.9 + \frac{1.3}{1.3} + \frac{2.2}{2.2} \\ 0.6 + \frac{1.9}{1.7} + \frac{1.7}{1.4} + \frac{2.0}{2.5} \\ 1.6 + \frac{1.9}{1.9} + \frac{2.2}{2.7} \\ 1.2 + \frac{2.7}{1.9} \\ \frac{1.2}{1.2} + \frac{2.7}{1.9} \\ \frac{1.2}{1.2} + \frac{1.2}{1.2} \\ \frac{1.2}{1.2} \\$	
Simple geometry, it does not take into account the dynamics nor the fractal- like structure of real molecular clouds.	Do not consider the role of gas dynamics nor the 3D structure Underlying dissipation processes are imposed (Falgarone et al. 2010, Godard et al. 2009, 2014)	Do not treat microphysics Constant ion density (Myers et al. 2015)	

Other approaches: Alfvén waves (Federman et al. 1996), Low velocity C-shocks (Draine & Katz 1986), Irradiated low-v C-shocks (Lesaffre et al. 2013)

valeska.valdivia@cea.fr

UPMC-Paris December 2016

Hybrid Approach For The Chemistry

On-the-fly Post-processing Crucial species for the chemistry: H₂ which is a Compute the **equilibrium** abundances for all the **bottleneck** for the chemistry. species (besides H_2 and HI) $\frac{\partial n_{\mathrm{H}_2}}{\partial t} + \nabla \cdot (n_{\mathrm{H}_2} \boldsymbol{v}) = k_{\mathrm{form}} n(n - 2n_{\mathrm{H}_2}) - k_{\mathrm{ph}} n_{\mathrm{H}_2}$ Compute the ion-neutral drift velocity v_d Heating: PE, CR, H₂ (formation and destruction) Use local physical conditions (n, T, Av, $f_{sh,H2}$) Use cooling functions: CII, OI, Ly α , Rec, H₂ • Compute dust shielding and H₂ self-shielding $f_{\rm sh_{H2}} = < e^{-\tau_{d_11000}} f_{\rm shield} >$ Solve ideal MHD equations.

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0, \\ &\frac{\partial\rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v} - \boldsymbol{B} \boldsymbol{B}) + \nabla P = -\rho \nabla \phi, \\ &\frac{\partial E}{\partial t} + \nabla \cdot [(E+P)\boldsymbol{v} - \boldsymbol{B}(\boldsymbol{B} \boldsymbol{v})] = -\rho \mathcal{L}, \\ &\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \cdot (\boldsymbol{v} \boldsymbol{B} - \boldsymbol{B} \boldsymbol{v}) = 0, \\ &\nabla^2 \phi = 4\pi G\rho, \end{split}$$

mandatory				
X	Mathis	1	external UV radiation field	
A_V	mag	0 - 10	visible extinction	
T_K	Κ	$10 - 10^4$	kinetic temperature	
$n_{\rm H}$	cm^{-3}	$10^{-1} - 10^4$	gas density	
$\zeta_{ m H_2}$	s^{-1}	3×10^{-16}	CR ionisation rate of H ₂	
optional				
$f_{\rm sh, H_2}$		$10^{-8} - 1$	H ₂ self-shielding factor ^a	
$f_{\rm sh, CO}$		1	CO self-shielding factor ^b	
$x(H_2)$		$10^{-7} - 1$	H ₂ abundance	
vd	$\rm km~s^{-1}$	0 - 5	ion-neutral velocity drift	

(a) Valdivia et al. (2016) (b) not computed in the simulation

THE HYDRIDE TOOLBOX

Hybrid Approach For The Chemistry: Validity

valeska.valdivia@cea.fr

UPMC-Paris December 2016

Numerical Simulation: Results On H₂

valeska.valdivia@cea.fr

C2

via et al. 2016) UPMC-Paris December 2016

DE LA RECHERCHE À L'INDUSTRIE

RS

Post-processing:

Compute equilibrium abundances $(n, T, Av, f_{sh,H2}, B)$

Out-of-equilibrium H ₂ :	H ₂ at equilibrium:
Non-equilibrium H ₂ from simulation	Abundances at equilibrium for all the species including H ₂ and HI (n, T, and shielding from simulation)
With ion-neutral drift:	Without ion-neutral drift:
Non-equilibrium H ₂ Iterative method • $v_{d} \approx \frac{(\nabla \times B) \times B}{4\pi \sum_{jk} n_{j} n_{k} \mu_{jk} K_{jk}}$ • $T_{eff} = T_{gas} + \Delta T$ • $\Delta T = \frac{\mu}{3k} v_{d}^{2}$ • $k \alpha \exp(-\max\{\frac{\beta}{T_{eff}}, (\beta - 3\Delta T)/T\})$	Non-equilibrium H ₂ $v_d = 0$ T_{gas}

UPMC-Paris December 2016

Role Of Warm H₂: 2D PDF

valeska.valdivia@cea.fr

Cea

UPMC-Paris December 2016

Role Of Warm H₂: LOS Analysis

valeska.valdivia@cea.fr

Cea

UPMC-Paris December 2016

Role Of Warm H₂: N(CH⁺) vs N_{tot}

valeska.valdivia@cea.fr

UPMC-Paris December 2016

DE LA RECHERCHE À L'INDUSTRIE

Role Of The Ion-Neutral Drift: 2D PDF

valeska.valdivia@cea.fr

UPMC-Paris December 2016

Role Of The Ion-Neutral Drift: LOS Analysis

valeska.valdivia@cea.fr

Cea

Role Of The Ion-Neutral Drift: N(CH⁺) vs N_{tot} <u>Cea</u>

valeska.valdivia@cea.fr

Role Of The Ion-Neutral Drift: LOS Analysis

valeska.valdivia@cea.fr

Cea

Summary

- It is possible to make a hybrid approach to include the dynamical effects on the most sensitive species (those with long evolution times) at a reasonable computational cost: species that react fast can be calculated at equilibrium with respect to the «dynamically» calculated species.
- Warm H₂ is crucial to efficiently form CH⁺, nevertheless the abundances of CH⁺ are still underpredicted compared to observations (Crane et al. 1995; Gredel 1997; Weselak et al. 2008)
- The formation of CH⁺ seems to be more efficient in regions where H₂ is not expected at equilibrium.
- High ion-neutral drift velocities can boost the CH⁺ formation, but these events are extremely rare => The effect is negligible.
- A good description of **small-scale physics** is necessary to avoid unrealistic v_d distributions.
- <u>Possible clues</u>: dissipation of turbulence (Falgarone et al. 2010, Godard et al. 2009, 2014), UV pumped H₂ levels (Zanchet et al. 2013; Herráez-Aguilar et al. 2014)

Extra slides

valeska.valdivia@cea.fr

UPMC-Paris December 2016

Ideal MHD multiphase simulation

RAMSES AMR code (Teyssier 2002) L = 50 pc $N = 1 \text{ cm}^{-3}$ $V_{\text{in}} = 15 \text{ km s}^{-1}$ $B = 2.5 \mu\text{G}$ $dx_{\text{min}} = 0.05 \text{ pc}$ $dx_{\text{max}} = 0.2 \text{ pc}$

Cea

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0, \\ &\frac{\partial\rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v} - \boldsymbol{B} \boldsymbol{B}) + \nabla P = -\rho \nabla \phi, \\ &\frac{\partial E}{\partial t} + \nabla \cdot [(E+P)\boldsymbol{v} - \boldsymbol{B}(\boldsymbol{B} \boldsymbol{v})] = -\rho \mathcal{L}, \\ &\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \cdot (\boldsymbol{v} \boldsymbol{B} - \boldsymbol{B} \boldsymbol{v}) = 0, \\ &\nabla^2 \phi = 4\pi G\rho, \end{split}$$

(Valdivia et al. 2016)

$$\frac{\partial n_{\mathrm{H}_2}}{\partial t} + \nabla \cdot (n_{\mathrm{H}_2} \boldsymbol{v}) = k_{\mathrm{form}} n(n - 2n_{\mathrm{H}_2}) - k_{\mathrm{ph}} n_{\mathrm{H}_2}$$

THE HYDRIDE TOOLBOX

valeska.valdivia@cea.fr

- Clumps are dominated by the **turbulent pressure** => **Transient** structures
- H₂ can be transported from cold and dense regions towards warm and diluted environments, where it survives due to the shielding provided by the multiphase structure

$\mathbf{a} = \mathbf{H}_2$ formation

H₂ formation on grain surfaces

valeska.valdivia@cea.fr

UPMC-Paris December 2016

H₂ destruction

H₂ destruction by UV fluorescent photodissociation

Tree-based method (Valdivia & Hennebelle, 2014)

THE HYDRIDE TOOLBOX

valeska.valdivia@cea.fr

27

DE LA RECHERCHE À L'INDUSTRIE

cea

H₂ Thermal feedback

Cooling:

• H₂ line emission: (Le Bourlot et al. 1999)

$$W(H_2) = \frac{1}{n(H_2)} \sum_{vJ, v'J'} (E_{vJ} - E_{v'J'}) n_{vJ} A(vJ \to v'J')$$

THE HYDRIDE TOOLBOX

Heating:

- H₂ formation: 1.5 eV
- H₂ destruction: 0.4 eV (Black & Dalgarno 1977, Glover & Mac Low 2007)

valeska.valdivia@cea.fr