Line lists for hot hydride molecules

Jonathan Tennyson
Physics and Astronomy
University College London

Calculated molecular line lists for the opacity of exoplanets, cool stars and other hot atmospheres

Hydride Toolbox
Paris
December 2016

Image credit: Shutterstock
“Molecular physics challenge for exoplanet studies”

Line lists for hot hydride molecules and their friends

Jonathan Tennyson
Physics and Astronomy
University College London

ExoMol

Calculated molecular line lists for the opacity of exoplanets, cool stars and other hot atmospheres

Hydride Toolbox
Paris
December 2016
The Exoplanet Revolution

9 to > 3000 in 20 years!
HD 209458b

Period = 3.52 days

Mass = 0.69 ± 0.05 M_{Jupiter}

Radius = 1.35 ± 0.04 R_{Jupiter}

Density = 0.35 ± 0.05 g/cm^3
HD189733b: Primary transit with Spitzer

Beaulieu et al., 2007

Knutson et al., 2007
Water line list: BT2
Barber et al., 2006

Water, different T-P

Confirmation of Water, methane and hazes!

G. Tinetti (private communication, 2008)
Cool atmospheres: dominated by molecular absorption

The molecular opacity problem

M Dwarf
Brown Dwarfs
Planet

Exoplanets?

Marley & Leggett (2008)
• 5 year project: 2011-16
• Provide data for all molecular transitions important for exoplanet atmospheres
• Methodology: first principles quantum mechanical calculations, informed by experiment

Line list = line positions + line intensities

This is our 2016-line list for water
Frontier Problems in Exoplanet Characterization

- Non-equilibrium processes in exoplanet atmospheres
 \(\text{CH}_4, \text{CO}, \text{NH}_3 \)
 (Stevenson et al. 2010; Madhusudhan & Seager 2011; Moses et al. 2013)

- Constraints on thermal inversions in hot Jupiters
 \(\text{TiO}, \text{VO}, \text{H}_2\text{S} \)
 (Fortney et al. 2008; Spiegel et al. 2009)

- C/O ratios and Carbon-rich atmospheres
 \(\text{H}_2\text{O}, \text{CO}, \text{HCN}, \text{CH}_4, \text{C}_2\text{H}_2, \text{TiH}, \text{FeH} \)
 (Fortney et al. 2008; Spiegel et al. 2009)

- Constraints on exoplanet formation conditions
 \(\text{H}_2\text{O}, \text{CO}, \text{CH}_4 \)
 (Madhusudhan et al. 2011; Oberg et al. 2011)

- Atmospheres and interiors of super-Earths
 \(\text{H}_2\text{O}, \text{CO}_2 \)
 (Bean et al. 2011; Desert et al. 2011; Miller-Ricci Kempton et al. 2011)

Slide courtesy of N Madhusudhan (Cambridge)
Molecular line lists for exoplanet & other atmospheres

<table>
<thead>
<tr>
<th>Primordial (Metal-poor)</th>
<th>Terrestrial Planets (Oxidising)</th>
<th>Giant-Planets & Cool Stars (Reducing atmospheres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Already available</td>
<td>O$_2$, CH$_4$, SO$_2$, SO$_3$</td>
<td>H$_2$, CN, CH, CO, CO$_2$, TiO</td>
</tr>
<tr>
<td>H$_2$, LiH</td>
<td>OH, CO$_2$, O$_3$, NO</td>
<td>H$_2$O, HDO, NH$_3$,</td>
</tr>
<tr>
<td>HeH$^+$, H$_3^+$</td>
<td>H$_2$O, HDO, NH$_3$</td>
<td>HCN/HNC, H$_2$O, NH$_3$,</td>
</tr>
<tr>
<td>H$_2$D$^+$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ExoMol

Available from elsewhere	O$_2$, CH$_4$, SO$_2$, SO$_3$	CH$_4$, PH$_3$, C$_2$, C$_3$, HCCCH, H$_2$S,
	HOOH, H$_2$CO, HNO$_3$	C$_2$H$_6$, C$_3$H$_8$, VO, O$_2$, AlO, MgO,
		CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO

Full details:

www.exomol.com
Why theory, not experiment?
Exoplanets

Brown Dwarfs
Dwarf Stars

Lab Flames
Spectra

Earth 300 1000 1500
Sunspots 3000 4000
The Sun 6000

T / K 8000

hitran hitemp
diatom ic molecules
polyatomic molecules

H^+
Completeness: Absorption of ammonia (T=300 K)

Less than 30,000 NH₃ lines known experimentally:
BYTe contains 1.1 billion lines, about 40,000 times as many!

Method: Spectrum from the “first-principles”

Ab initio calculations

DMS

PES

Variational calculations

Rovibrational wavefunctions

Intensities (Einstein A_{if})

Rovibrational energies

Refinement

Line list
Ab initio: solve for motion of electrons

Potential energy curve

![Potential energy curve](Shayesteh et al 2007)

Dipole moment curve

![Dipole moment curve](MOLPRO)

Line list: 6690 lines, $N_{\text{max}}=60$

Solve for the motion of the nuclei

LEVEL 8.0

R. Le Roy, Waterloo, Canada

New general diatomic code

Duo

Freely available from CCPforge
ccpforge.cse.rl.ac.uk
Line list: CaO

Khalil et al (2011)

Potential energy curves, cm$^{-1}$

- $A^1 +$
- $b^3 +$
- a^3

Spin-orbit, cm$^{-1}$

- SO_4
- SO_3
- SO_2
- SO_5

Large: $\sim 50-100$ cm$^{-1}$

Duo

Solve for the motion of the nuclei

Dipole moment

Transition dipole moment curves, Debye

- X-A
- X-A'
- A-A'
- a-b

Line list: 22 M lines

Absorption, cm2/molecule

- X-X
- A'-X
- A-X

$T=1500$ K
$T = 2000$ K

Bernath

CrH

Maire N. Gorman, PhD UCL (2016)
Ab initio PES
[CCSD(T)/aug-cc-pV(Q+d)Z]
R. I. Ovsyannikov et al.
Refined using lab spectra

Solve for the motion
of the nuclei

Ab initio:
CCSD(T)/aug-cc-pVTZ
S.N. Yurchenko et al.

Potential energy

Tunneling motion neglected

Dipole moment

TROVE: Yurchenko, Thiel, Jensen

16.8 billion transitions for T up to 1500 K

TROVE

JPL

HITRAN

It has a nice strong feature at 4.5 μm

No detection yet of phosphine on exoplanets
First principles Predictions of tunnelling

Ab initio: solve for motion of electrons

Potential energy

9D surface
130 000 geometries
MOLPRO CCSD(T)-f12/QZ

Dipole moment

10 to 10

Solve for the motion of the nuclei

TROVE
Yurchenko, Thiel, Jensen

Three 9D surfaces
130 000 geometries
MOLPRO CCSD(T)-f12/QZ

Ab initio
10 electrons
Ground electronic state

Line list:

HITRAN

9.8 Billion transitions

Intensity (cm/molecule)

CH$_4$ diagonalization: Size of the problem

Acknowledgment: Andrey Kaliazin Dirac/COSMOS

SGI: Jan Wilson, Simon Appleby Cheng Liao

Matrix dimension (F symmetry)

Number of eigenvalues

Diagonalization: Size of the problem

LAPACK (DSYEV)
DARWIN

SCALAPACK (PDSYEV)
COSMOS III/DARWIN

J

N

0 5 10 15 20 25 30 35 40 45 50

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

Size of the problem

Number of eigenvalues

Matrix dimension (F symmetry)
CH$_4$ diagonalization: Size of the problem

Matrix dimension (F symmetry)

Number of eigenvalues

16 nodes = 1 DARWIN socket

2.5 hours

6 hours

15 hours
CH$_4$ diagonalization: Size of the problem

Number of eigenvalues N and matrix dimension (F symmetry) for different computation times and core counts:

- **COMSOS II**
 - 4 hours, 64 cores
 - 9 hours, 144 cores
 - 11 hours, 160 cores

- **DARWIN**
 - 6 hours, 96 cores

Number of eigenvalues N increases with the matrix dimension J. The graph shows the trade-off between computation time and core count for solving the problem.
Absorption spectra of CH$_4$: from experimental line list
Temperature-dependent coLOURS of methane
VSTAR spectra of the T4.5 brown dwarf: a “methane dwarf”

T 4.5 Observed (SpeX@IRTF)
VSTAR STDS CH\textsubscript{4} (empirical)
VSTAR ExoMol CH\textsubscript{4} (10to10)

2MASS 0559-14

SN Yurchenko, J Tennyson, J Bailey, MDJ Hollis, G Tinetti, PNAS, 111, 9379 (2014)

Cushing, Rayner, Vacca (2005)
Published in MNRAS
I. BeH, MgH, CaH
II. SiO
III. HCN/HNC
IV. CH$_4$
V. NaCl, KCl
VI. PN
VII. PH$_3$
VIII. H$_2$CO
IX. AlO
X. NaH
XI. HNO$_3$
XII. CS
XIII. CaO
XIV. SO$_2$
XV. HOOH
XVI. H$_2$S
XVII. SO$_3$
XVIII. VO

(Virtually) Complete
XIX. H$_2^{18}$O, H$_2^{17}$O
XX. H$_3^+$
XXI. H$_2^{16}$O
XXII. NO
XXIII. TiO
• NS
• CrH

In progress
• C$_3$
• PH, PO, PS
• TiH
• MnH
• NaO
• SH
• AlH
• C$_2$H$_4$
• SiH
• HCCH
• SrH
• CH$_3$Cl
• SiH$_4$

Planned
• NH$_3$
• MgO
• NiH
• FeH
• Larger hydrocarbons

Updated data structure
New functionality
Other features:

1. Lifetimes (Tennyson et al, J Phys B, 49, 044002 (2016))
2. Lande g-factors (Semenov et al, J Molec Spectrosc (2016))
3. Pressure broadening (Barton et al, JQSRT (2017) + submitted)
 H₂ and He
 J and T dependence (only)
4. Dipoles for molecular control/orientation effects
 (A Yachmenev, RichMol project)
First detection of super-Earth atmosphere
Exoplanet 55 Cancri e has a dry atmosphere without any indications of water vapor.

HCN (weakly) detected!
“Hydrogen cyanide, or prussic acid, is highly poisonous, so it is perhaps not a planet I would like to live on!”
J. Tennyson, UCL press release

H$_2$CO, HOOH, CO$_2$, O$_3$, ScH, TiH, CrH, NaCl, KCl, SO$_3$, HNO$_3$, SO$_2$, C$_3$, NH$_3$, NH$_3$, HCCH, VO, TiO, C$_2$H$_4$, CH$_4$, PH$_3$
About the first edition
“The best book for anyone who is embarking on research in astronomical spectroscopy”
Contemporary Physics (2006)

Published 2011
Anatoly Pavlyuchko (1956-2015)

Vibrational Hamiltonian matrix:
A dense near the diagonal,
B sparse elsewhere
Vibrational Hamiltonian matrix:
Diagonalise region 1 only
Include effects of region 2 using perturbation theory

Rotation-Vibration Hamiltonian:
Treat vib state by vib state
Include Coriolis coupling via perturbation theory

$T = 298$ K spectrum of nitric acid (HNO$_3$)

Nitric acid as a bio-signature?

Absorption ($T=300\text{K}$) spectrum of NH_3: Accuracy

[Graph showing absorption spectrum with labeled axes: Intensity [cm/mol] on the y-axis and Wavenumber [cm$^{-1}$] on the x-axis. The graph compares experimental and theoretical data.]
Absorption ($T=300K$) spectrum of NH$_3$: Accuracy
Absorption ($T=300\,\text{K}$) spectrum of NH_3: Accuracy