Hydrides in (dense) PDRs

V. Ossenkopf-Okada

I. Physikalisches Institut der Universität zu Köln

Volker Ossenkopf-Okada

The Hydrides Toolbox

Formation of many hydrides in ISM "forbidden" by endothermicity and/or reaction barriers

Element	lonization Potential (eV)	Endothermicity (Kelvin equivalent = $\Delta E/k_B$) for			Driver
		$X + H_2 \rightarrow XH + H$	$X^+ + H_2 \rightarrow XH^+ + H$	$X + H_3^+ \rightarrow XH^+ + H_2$	
He	24.587	No reaction	Exothermic, but primary channel is to He + H + H ⁺	29000	
С	11.260	11000	4300 🗹		Warm gas
Ν	14.534	15000	230	10000	Cosmic rays
0	13.618	920 🗹	<u> </u>	\checkmark	Warm gas or cosmic rays
F	17.423			10000	None needed
Ne	21.564	No reaction	Exothermic, but primary channel is to Ne + H + H ⁺	27000	
Si	8.152	17000	15000		Warm gas
Р	10.487	19000	13000		Warm gas
S	10.360	10000	10000 🗹		Warm gas
Cl	12.968	515	\checkmark		UV with hv > 12.97 eV
Ar	15.760	No reaction		6400	Cosmic rays

Gerin et al. (2016)

Volker Ossenkopf-Okada

Hydrides in dense PDRs

The Hydrides Toolbox

Paris,

Possible solution

Use energy from UV- excited vibrations

• H₂ vibrational excitation:

 $S^+ + H_2 \rightarrow SH^+ + H$

Application

PDRs (photon-dominated regions/photodissociation regions):

- Energy balance dominated by UV photons 5eV < hν < 13.6eV
- Prototype: Orion Bar
- Edge-on geometry
- Exposed to UV field $\chi \approx 4 \cdot 10^4 \chi_0$ from Θ^1 Ori C

Spitzer/IRAC

The Hydrides Toolbox

Stratified structure

- Layering of chemical transitions and temperatures
- Molecules dissociated at the cloud surfaces.
- Complex molecules only in the dense cores.

(KOSMA-τ PDR model: Röllig et al. 2006)

Use energy from UV- excited vibrations

Chemical network

- Requires state-dependent reaction rates
 - Full state-to-state rates for excitation problem
 - *v*-dependence: $C^+ + H_2$, $S^+ + H_2$

Zanchet et al. (2013)

2

1e-09

1e-10

1e-11

 K_v (cm³.molecule⁻¹.s⁻¹)

1000/T (K⁻¹)

Gómez-Carrasco et al. (2014)

Example CH⁺, SH⁺

- Similar endothermic reaction paths
 - $\begin{array}{l} \mathrm{C^{+}}+\mathrm{H}_{2}\rightarrow\mathrm{CH^{+}}+\mathrm{H}\\ \mathrm{S^{+}}+\mathrm{H}_{2}\rightarrow\mathrm{SH^{+}}+\mathrm{H}\\ \mathrm{Si^{+}}+\mathrm{H}_{2}\rightarrow\mathrm{SiH^{+}}+\mathrm{H} \end{array}$
- Endothermic by 4280K
- Endothermic by 9860K
- Endothermic by 8240K

(c)

The Hydrides Toolbox

CH-

CH2+

12/19/16

Surface of dense PDRs

Paris,

 $(\chi = 10^4 \chi_0, n = 10^6 \text{ cm}^{-3})$

Results

Example CH⁺, SH⁺

- At PDR surface
 - CH⁺ enhanced by 10 100
 - SH⁺ enhanced by $10^3 10^4$

compared to diffuse medium conditions

Hydrides in dense PDRs

Detailed chemistry: CH⁺

OH

SH⁺

Results

Comparison of hydrides

- Groups of molecules:
 - Atomic gas only:
 - CH⁺, OH⁺, H_2O^+ , OH
 - CO-dark mol. gas:
 - SH
 - MC only:
 - SiH⁺, SiH
 - Atomic + COdark mol. gas:
 - CH, C₂H, SH⁺
 - Atomic gas + MC:
 - HCO⁺, H₃O⁺, H₂O

Compare to observations

Morphology

- OH \leftrightarrow CH⁺
 - Good correlation $CH^+ \leftrightarrow C^+, H_2^*,$ high-J CO $OH \leftrightarrow H_2O$

5° 25 45'

- Layering CH⁺, OH stronger than predicted
- OH rather at higher densities, combined UV-density tracer

Aap: H₂ v=1-0 S(1)

23⁵ RA J2000 22 215

Contours: OH 84

Parikka et al. (2016), Goicoechea et al. (2011)

 \rightarrow Talk Parikka

21s

22

20

9.2e-03

7.4e-03

5.5e-03

3.7e-03

1.8e-03

7.0e-03

5.6e-03

4.2e-03

2.8e-03

1.4e-03

Volker Ossenkopf-Okada

The Hydrides Toolbox

Contours: OH 84 µm

Compare to observations

Example C_nH, C_nH₂

- Pronounced stratification
- C₂H does not follow PAHs
 - → PAH destruction not main production
 - \rightarrow instead C⁺ + H₂

Cuadrado et al. (2015)

- Qualitatively in agreement with model
- Displacements wider than predicted

Paris,

CH, CCH, OH⁺, HCO⁺

- Good spatial correlation
 - No significant stratification
- Pick-up from different gas at different velocities

Volker Ossenkopf-Okada

17

Ν

CH, CCH, OH⁺, HCO⁺

- Different correlations in different velocity components
 - Worst for main Orion Bar component
 - CI not correlated with hydrides
 - CCH requires multiple component PDR model

Nagy et al. (2015)

Line profiles

HIFI spectral scan in Orion Bar

- Matching line profiles for most species
- Outliers:
 - HF, CF⁺
 - Veil velocities
 - CO, OH⁺, H₂O
 - Orion Ridge
 velocities
 - CH+, CH, C+
 - Wide lines with Bar velocities
- Does not match theoretical scheme!

The Hydrides Toolbox

9/16 19

Solution

Solution

Photo-evaporation / photo-ablation

Photodissociation Region

Observational evidence

ALMA mapping (Goicoechea et al. 2016):

Clumpy and filamentary structure seen in SII (6731Å, green), OI (6300Å, blue), HCO⁺ (J=4-3, red), atomic gas is dark

- Allows deeper penetration of UV radiation
- Every PDR has photo-evaporating low-density gas

Goicoechea et al. (2016)

The Hydrides Toolbox

22

KOSMA-τ-3D

• PDR composed of mixture of clumps and interclump medium (Andree-Labsch et al. 2016)

Hydrides in dense PDRs

The Hydrides Toolbox

Requires low density component

Significantly different chemistry

 Higher columns of CH, CCH, OH, SH, SiH and SH+ compared to high-density model

Exchange of material between the two phases expected

24

Beyond the Orion Bar

WADI:

- Profiles across PDR interfaces
 - Extended CH, OH
 - Differential stratification
 - Many "puzzles" for high UV sources
 - Structures always more complex

Ossenkopf-Okada et al., in prep.

The Hydrides Toolbox

Beyond the Orion Bar

PDRs with YSOs / YSO-PDRs

S140: Ossenkopf-Okada et al., in prep.

- Different correlations for many velocity components
 - Indicate different origins: outflows, envelope, irradiated cavity walls
 - CH⁺ and OH⁺ as UV tracer
 - H₂O⁺ as X-ray tracer
- Every YSO contains multiple PDRs \rightarrow Talk A. Benz

Volker Ossenkopf-Okada

The Hydrides Toolbox

W3 IRS5: Benz et al. (2016)

26

More complications

Excitation

- Formation pumping can be essential
 - Requires state-to-state reaction rates
- OH⁺ (Gómez-Carrasco et al. 2014)
 - Strong *J*-dependence of formation rate

Talks: A. Faure, F. Lique,

J. Schneider

 $(v=0,J=1)\rightarrow(v'=1,N)$

(v=0,J=0)→(v'=1,N)

OH⁺ intensities: (a) excitation by nonreactive collisions, (b) including chemical pumping assuming Boltzmann (T=2000K), (c) adopting branching ratios from quantum calculations

Excitation

- CH⁺ (Godard & Cernicharo 2013)
 - Collisions reactive + non-reactive dominant for Orion Bar conditions
 - High-J mainly populated by reactive collisions (chemical pumping)

different CH⁺ levels (Godard & Cernicharo 2013)

Lab/Theory:

- Collision rate coefficients still missing for many species
- State-to-state reaction coefficients for many species
- Dissociation spectra in particular for isotopologues (e.g. $H_2^{18}O$)
- Mechanisms and rates of surface chemistry

Codes:

- Full time-dependence at good spatial resolution
- Initial and boundary conditions
- Self-consistent inclusion of PAH temperature and charge distribution

Hydrides

Requires velocity-resolved THz spectroscopy

Many answers, more questions

- There is no "typical PDR chemistry"
 - Comparison "diffuse clouds" ↔ PDRs does not make sense
 - Significant variation with optical depth and density
- PDRs are neither static nor have a simple geometry
 - Forget single component models
 - Forget pressure balance models
 - There is no PDR without low density gas!
 - Always produced by photo-evaporation
 - Simple hydrides (CH, OH, SH, NH, SiH) most abundant in the low density gas
 - Time dependence is essential
- Hydrides provide essential information on the photo-evaporating material

9/16 31