Future Observations of Hydrides

Karl M. Menten Max-Planck-Institut für Radioastronomie

The Hydride Toolbox

Paris 2016 December 15

A MASA

Light Hydrides before Herschel

Building blocks of larger molecules
Needs bright optically visible
stars as background sources →
Restricted to a few kpc from Sun

lines from CH, CH⁺ and CN have anslucent interstellar clouds

C. Hieret, Diploma Thesis, MPIfR

HERSCHEL

Launch: 14 May 2009 R.I.P. 17 June 2013

HERSCHEL

HIFI (Heterodyne Instrument for the Far Infrared) 480 – 1910 GHz, 7 bands Very high resolution heterodyne spectrometer

PACS (Photodetector Array Camera and Spectrometer) 1.4 – 5 THz: photom. 1.75 x 3.5' / spec 50×50" @ 5" Imaging photometer / medium resolution grating spectromete

SPIRE (Spectral and Photometric Imaging Receiver) 0.58, 0.83, 1.2 THz, 4' ×4' Imaging photometer / imaging Fourier transform spectrometer

Herschel/HIFI Guaranteed Time Key Programmes

HEXOS: Herschel/HIFI Observations of EXtraOrdinary Sources

- Complete line surveys of 5 positions in the Orion- KL and Sgr B2 molecular clouds
- PI: E. Bergin (U. Michigan, Ann Arbor)

PRISMAS: PRobing Interstellar Molecules with Absorption Line Studies

- (Mostly) rotational ground-state transitions of O-, C-, and N-bearing hydrides toward selected SFRs
- PI: M. Gerin (LERMA Obs. de Paris/ENS)

The Background Sources: Cold or Warm Dust from

Protostellar Condensations

Sgr B2 – Lis & Goldsmith 1990

The cosmic ray ionization rate over the whole Galaxy

Indriolo+ 2015

Interstellar OH⁺, H_2O^+ and H_3O^+ along the sight-line to G10.6–0.4^{*,**}

M. Gerin¹, M. De Luca¹, J. Black², J. R. Goicoechea³, E. Herbst⁴, D. A. Neufeld⁵, E. Falgarone¹, B. Godard^{1,8},

Transition	Frequency	Error	E_l	Α	Ref.
	MHz	MHz	cm ⁻¹	10 ⁻² s ⁻¹	
$OH^+N = 1 - 0$					
2,5/2-1,3/2	971803.8	1.5	0.0	1.82	1
2, 3/2 - 1, 1/2	971805.3	1.5	0.0	1.52	1
2,3/2-1,3/2	971919.2	1.0	0.0	0.30	1
o-H ₂ O ⁺ 1 _{1,1} -0 _{0,0}					
3/2, 3/2-1/2, 1/2	1115122.0	10	0.0	1.71	2
3/2, 1/2-1/2, 1/2	1115158.0	10	0.0	2.75	2
3/2, 5/2-1/2, 3/2	1115175.8	10	0.0	3.10	2
3/2, 3/2-1/2, 3/2	1115235.6	10	0.0	1.39	2
3/2, 1/2-1/2, 3/2	1115271.6	10	0.0	0.35	2
$p-H_2O^+1_{1,0} - 1_{0,1}$					
3/2, 3/2-3/2, 3/2	607207.0	20	20.9	0.60	2
H ₃ O ⁺					
$0^{-}_{0} - 1^{+}_{0}$	984711.9	0.3	5.1	2.3	3

Table 1. Transition spectroscopic parameters.

References. 1, Müller et al. (2005) & CDMS; 2, Strahan et al. (1986), Ossenkopf et al. (2010); 3 Yu et al. (2009) & JPL catalog.

Chemistry of interstellar oxygen

Chemistry is initiated by cosmic rays

D. Neufeld

Stratospheric Observatory for For Infrared Astronomy (SOFIA)

- 2.7 m telescope
- US/German (NASA/DLR) 80%/20% joint project
- 0.3 1600 μm (0.2 2500 THz) wavelength/frequency range
- GREAT und STAR instruments from Bonn/Köln/Berlin-Adlershof
- First science flight
- Project duration > 20 years

GREAT - the Consortium

PI-Instrument funded and developed by

- □ MPI Radioastronomie (2.7 THz channel)
 - > S. Heyminck (system engineer)
 - I. Camara, T. Klein (2.7 THz LO)

Univ. zu Köln, KOSMA (1.4/1.9THz channels)

- > U. Graf (1.4 &1.9THz LO, Optics)
- > K. Jacobs (HEB mixers up to 2.7 THz)

DLR Planetenforschung (4.7 THz channel)

- > H-W. Hübers (Co-PI: 4.7 THz HEB, IF, cal unit)
- MPI Sonnensystemforschung

GREAT constantly gets re-invented

Herschel/HIFI: 480–1250 and 110–1910 GHz

Mixer	Frequency range	Mixer	Ma Feed/coupling structure Mixer Development
band		Element	cir Laboratory
1	480 – 640 GHz	SIS	horn and LERMA
		Nb-Al2O3-Nb	Paris, France
2	640 – 800 GHz	SIS	
		NbTiN-Al2O3-Nb	l' Germany
3	800 – 960 GHz	SIS	
		NbTiN-Al2O3-Nb	lands
4	960 – 1120 GHz	SIS	In Chi Ry I Chi Par
		NbTiN-Al2O3-Nb	
5	1120 – 1250 GHz	SIS	
		NbTiN-AIN-NbTi	Charley Wind Chr
6L	1410 – 1703 GHz	HEB NbN	Chur and the
		phonon cooled	Sthi. Nore
6H	1703 – 1910 GHz	HEB NbN	Al co-planar
		phonon cooled	

SOFIA/GREAT: 1.25 –2.5 THz + 4.7 THz

Channel	Frequencies (THz)	Lines of Interest
low-frequency L1 a,b	1.25-1.50 (single pixel)	[NII], CO series, OD,HCN,H ₂ D ⁺
low-frequency L2	1.81-1.91 (single pixel)	NH ₃ ,OH,CO(16-15),[CII]
mid-frequency M a,b	2.5 – 2.7 (single pixel)	OH(² π _{3/2}),HD
high-frequency H	4.7 (single pixel)	[OI]
upGREAT Low Frequency Array (LFA)	1.9 - 2.5 (14 pixels)	OH lines, [CII],CO series, [OI]
upGREAT High Frequency Array (HFA)	4.7 (7 pixels)	[01]

http://www3.mpifr-bonn.mpg.de/div/submmtech/heterodyne/upgreat/upgreatmain.html

FFTS4G @ upGREAT / SOFIA

Max-Planck-Institut für Radioastronomie

New light hydrides with SOFIA

Searches for light hydrides have been very succesful: SH, OD, p-H₂D⁺

OD resides in the envelopes of massive star-forming regions

Menten, Csengeri, Wiesemeyer, Wyrowski, Güsten

Ammonia/1.8 THz: Probing infall

→ Mass infall rates: a few x 10⁻³ M_☉/yr

> Wyrowski + 2012, 2016 See also Hajigholi+ 2016 (Herschel/HIFI)

The 4.75 THz (63 µm) OI ground-state fine structure line

First H/D detection in M42 $T_{\rm sys}({\rm DSB}) = 70000 \,{\rm K}$

Boreiko & Betz 1996

3000

4745 GHz DLR

3500

2500

IF freq (MHz)

4500

4000

5000

2013:

 T_{sys} (DSB, KOSMA, Jacobs) $\approx T_{sys}$ (DSB, DLS-Pf, Hübers) = 1500 K

[OI] 63 µm: from PACS to GREAT

Leurini+2015

Transition	Frequency [GHz] ^a	$A_{\rm E} [{\rm s}^{-1}]^b$	
OH, ${}^{2}\Pi_{3/2}, J = 5/2 \leftarrow 3/2$			
$F = 2^- \leftarrow 2^+$	2514.298092	0.0137	
$F=3^-\leftarrow 2^+$	2514.316386	0.1368	
$F = 2^- \leftarrow 1^+$	2514.353165	0.1231	
¹⁸ OH, ${}^{2}\Pi_{3/2}, J = 5/2 \leftarrow 3/2$			
$F = 2^+ \leftarrow 2^-$	2494.68092	0.0136	
$F = 3^+ \leftarrow 2^-$	2494.69507	0.1356	
$F=2^+\leftarrow 1^-$	2494.73421	0.1221	

Wiesemeyer et al. 2012

4GREAT will increase SOFIA's hydride coverage

Chemistry of interstellar oxygen

nistry is initiated by cosmic rays

D. Neufeld

Hot (> 600 K) water in AFGL 2591

SOFIA/EXES Indriolo+2015

High Resolution Mid-InfrarEd Spectrometer (HIRMES)

Talk by K. Pontoppidan

The Atacama Pathfinder Experiment (APEX)

Built and operated by

- Max-Planck-Institut fur Radioastronomie
- Onsala Space Observatory
- European Southern Observ

on

Llano de Chajnantor (Chile) Longitude: 67° 45′ 33.2″ W Latitude: 23° 00′ 20.7″ S Altitude: 5098.0 m

• Ø 12 m

- λ = 200 μ m 2 mm
- \bullet 15 μm rms surface accuracy
- PI and facility instruments: H/D RXs cover complete (accessible) frequency range from from 160–1100 GHz
- In operation since July 2005 / Just extended until 2022

http://www.mpifr-bonn.mpg.de/div/mm/apex/_____

Massive MPIfR digital electronic development

APEX Array Fast Fourier Transform Spectrometer: 4 × 8 × 1.5 GHz = 48 GHz/262144 channels

Massive MPIfR digital electronic development

System temperatures already at ∼ few time the quantum limit → Increase instantaneous bandwidth as much as possible

APEX Array Fast Fourier Transform Spectrometer: 4 × 8 × 1.5 GHz = 48 GHz/262144 channels

H₂D⁺ observations give an age of at least one million years for a cloud core forming Sun-like stars

Sandra Brünken¹, Olli Sipilä^{2,3}, Edward T. Chambers¹, Jorma Harju², Paola Caselli^{3,4}, Oskar Asvany¹, Cornelia E. Honingh¹, Tomasz Kamiński⁵, Karl M. Menten⁵, Jürgen Stutzki¹ & Stephan Schlemmer¹

APEX Molecules

CF ⁺	Neufeld et al. 2006	
OH⁺	Wyrowski et al. 2010	
SH⁺	Menten et al. 2011	and the second sec
H ₂ O ₂	Bergman et al. 2011	
	Parise al	

HO₂ Parise al. 2012

OH⁺ towards strong submm sources

- Study distribution using continuum from MSFRs ras background candle
- strongest OH+ fine structure line @ 1033GHz with MPIfR THz RX (Leinz +2010)

Wyrowski+ in prep.

First interstellar detection of OH⁺

F. Wyrowski¹, K. M. Menten¹, R. Güsten¹, and A. Belloche¹

Ubiquitous OH⁺ absorption.

Wyrowski+ in prep.

Menten+ 2011

NH₂ J = 3/2 - 3/2

C. Gette MSc thesis

Results so far and future developments:

Submillimeter observations of rotational ground-state transitions

- have greatly enhanced our view of diffuse ISM chemistry
- added missing pieces
- have extended chemistry studies throughout the Galaxy
- delivered new HI/H₂ tracers

This new information will allow addressing questions on

- Galactocentric abundance gradients
- effects of lower metallicity in Outer Galaxy
- ...

The Future is here!

- Atacama Large Millimeter/submillimeter Array
 50 x 12 m Ø antennas + 12 x 7 m Ø antennas
- Interferometer
- maximal resolution 0.01" (1000 times higher than APEX)
- European-North-American-Japanese project

From the Local Truth to the distant Universe

Muller et al. 2014: Strong absorption lines toward PKS 1830-211

Vieira et al. 2013

Reconsidering radio: cm-wavelength Galactic molecular (and atomic) absorption spectroscopy

Determination of HI Column Densities with the Lazareff (1975) Technique

PRISMAS Sources+: Winkel+ 2017

Detection of hydrogen fluoride absorption in diffuse molecular clouds with *Herschel*/HIFI: an ubiquitous tracer of molecular gas*

P. Sonnentrucker¹, D. A. Neufeld¹, T. G. Phillips², M. Gerin³, D. C. Lis², M. De Luca³, J. R. Goicoechea⁴,

Two of the most fundamental hydrides can easily be observed from the ground:

Hyperfine structure line emission from

- OH (near 1.7 GHz)
- CH (near 3.3 GHz)

+ hfs emission from within rotationally exited states
 Caveat: Lines are non-thermally excited (inverted or overcooled)

OH Energy Levels

OH ${}^{2}\Pi_{3/2}$ ground-state transitions

The "conjugate" OH ground-state satellite lines

VAN LANGEVELDE ET AL. 1995

The "conjugate" OH ground-state satellite lines

Selection rules:

- parity must change
- |F| = 0, 1
- ⇒More transitions lead to J = 3/2, F=2⁺ than 1⁻ and more to F=2⁻ than 1⁺
- \Rightarrow Overpopulation of F= 2 levels
- ⇒F = 2→ 1 maser
- \Rightarrow F = 1 \rightarrow 2 cooling

Constraining physical conditions with the 18 cm OH hfs lines

Fig. 4. Variation of the OH excitation temperatures as a function of the fractional ionization

 $T_{\rm g} = 10 \text{ K}; \quad W = 10^{-4}; \quad p = 2$ $n_{\rm HI} + n_{\rm H2} = 200 \text{ cm}^{-3}; \quad T_{\rm K} = 50 \text{ K}$ $N_{\rm OH}/V = 6 \cdot 10^{-5} \text{ cm}^{-3} \text{ pc km}^{-1} \text{ s}$ $(N_{\rm OH} \sim 5 \cdot 10^{14} \text{ cm}^{-2})$ Guibert et al. 1978

Transition	Frequency [GHz] ^a	$A_{\rm E} [{\rm s}^{-1}]^b$	
OH, ${}^{2}\Pi_{3/2}$, $J = 5/2 \leftarrow 3/2$			
$F = 2^- \leftarrow 2^+$	2514.298092	0.0137	
$F = 3^- \leftarrow 2^+$	2514.316386	0.1368	
$F = 2^- \leftarrow 1^+$	2514.353165	0.1231	
¹⁸ OH, ${}^{2}\Pi_{3/2}$, $J = 5/2 \leftarrow 3/2$			
$F = 2^+ \leftarrow 2^-$	2494.68092	0.0136	
$F = 3^+ \leftarrow 2^-$	2494.69507	0.1356	
$F=2^+\leftarrow 1^-$	2494.73421	0.1221	

Wiesemeyer et al. 2012

LVG Modeling with program from Cesaroni & Walmsley 1990

Csengeri, Menten, et al. 2012

To model the radio lines of OH and CH, accurate hyperfine structure selective collisional rate coefficents are of crucial importance!

Example: OH

Flower 1989

- Only OH–para-H₂
- hfs splitting not take into account → make guesses, use (rough) propensity rules (ΔF =0 preferred, Corey & Alexander 1988)

Offer+ 1994

- OH–ortho- and para-H₂
- hfs-resolved cross sections

New calculations by Faure+

Herschel observations of EXtra-Ordinary Sources (HEXOS): detecting spiral arm clouds by CH absorption lines*

S.-L. Qin¹, P. Schilke^{1,2}, C. Comito², T. Möller¹, R. Rolffs², H. S. P. Müller¹, A. Belloche², K. M. Menten², D. C. Lis³,

CH : ²П CH Energy Levels

NATURE VOL. 246 DECEMBER 21/28 1973

Fig. 8 Emission spectra of the v_{11} (heavy line), v_{10} (medium), and v_{01} (light) lines of the CH ground state Λ doublet, as seen in the direction of W12.

Rydbeck, Elldér & Irvine 1973

Genzel+ 1979

H. Liszt and R. Lucas: Comparative chemistry of diffuse clouds. IV: CH

Liszt & Lucas 2002

Transition	Frequency (Hz)	
$(1/2^+, 1) - (1/2^-, 1)$	3335479356 ± 3	
$(1/2^+, 0) - (1/2^-, 1)$	3349192556 ± 3	
$(1/2^+, 1) - (1/2^-, 0)$	3263793447 ± 3	
$(3/2^+,2) - (3/2^-,2)$	701677682 ± 6	
$(3/2^+,1) - (3/2^-,1)$	724788315 ± 16	
$(3/2^+,1) - (3/2^-,2)$	703978340 ± 21	
$(3/2^+,2) - (3/2^-,1)$	722487624 ± 16	

Truppe+ 2014

CH² $\Pi_{/2}$ J = 3/2 – 1/2 2011 GHz/SOFIA/4GREAT

H. Wiesemeyer, R. Güsten, V. Thiel, A. Jacob (MSc), C. Durán (PhD)

CH Collisional Rate Coefficents

- P. Dagdigian 2016, 2017:
 - Ab initio potential energy surfaces describing the interaction of CH(X²Π) with H₂
 - CH H2 collisional rate coefficients
- Ongoing:
 - Faure+: CH –H₂ collisional rate coefficients
 - Lique+: CH –H collisional rate coefficients

The potential of cm-wavelength hfs line observations

- Modeling their relative line intensities can deliver densities, temperature, o/p ratios
 - → Reliable hfs sensitive collisional rate coefficients absolutely mandatory
- In HMSFs, their regions with absorption (OH) and emission (CH): HII region free-free
 - Have comparable size as the submm background sources
 - Can be imaged (VLA, MeerKAT) with similar resolution as 21 cm HI and the submm lines (Herschel/SOFIA)
- Their low critical densities allow observations of emission, probing region inaccessible to (rotational) submm absorption
 → Dark clouds, SNR-GMC interactions, …

Low frequency line observations are expensive!

- Emission lines are weak
- Absorption lines

$$T_L = -\eta_{\rm cov} T_C \left(1 - e^{-\tau}\right) \approx -\eta_{\rm cov} T_C \tau$$

But:

$$\Delta T_{L} \approx \frac{T_{sys}}{\sqrt{\delta v \times t_{int}}} \qquad \text{Often:} T_{C} >> T_{RX}$$

$$T_{sys} = T_{RX} + T_{C}$$

$$\delta v = \delta v \frac{v}{c}$$
Much higher signal-to-noise ratios!

$$T_A \propto A_{eff} S$$

Atacama Large Millimeter Array

D. Li, R. Nan & Z. Pan

Table 1. Main technical specifications of FAST.

Spherical reflector: Radius = 300m, Aperture = 500m Illuminated aperture: $D_{ill} = 300m$ Focal ratio: f/D = 0.4611Sky coverage: zenith angle 40 Frequency: 70MHz - 3GHzSensitivity (L-Band): $A/T \sim 2000$, system temperature $T_{sys} \sim 20K$ Resolution (L-Band): 2.9' Multi-beam (L-Band): beam number = 19 Slewing time: <10 minutes Pointing accuracy: 8"

> CH: 3.3 GHzH₂CO: 4.8 GHzCH₃OH: 6.7 GHz

Powerful New Radio Interferometer Arrays

Karl G. Very Large Array: 2011- /27 x 25 m 1–50 GHz

MeerKAT: 2017- /64 x 13.5 m 0.6–1.75 + 8–14 GHz

Space

Presently, both in the US and in Europe, space missions are being discussed that feature high resolution spectroscopy:

NASA FIR Surveyor/Origins Space Telescope

ESA FIRSPEX:

 4 Bands: [CII] 158 μm (1.9 THz), [NII] 205 μm (1.46 THz), [CI] 370 μm (0.89 THz), CO(6-5) 433 μm (0.69 THz)

The next submm/FIR space observatory will happen in the far future

- \rightarrow big problem of losing your community
- → important issue when planning for future space missions, e.g., NASA FIR Surveyor, Origins ST, FIRSPEX
- \rightarrow High resolution spectroscopy may fall between the cracks

→Keep SOFIA flying!

Long duration balloon flights

Dec. 9, 2016

Balloons on Ice: Final Flight Launches in Antarctica

. NASA TV

The third and final NASA scientific balloon flight from Antarctica's Ross Ice Shelf near McMurdo Station was successfully launched at 3:53 p.m. EST Dec. 8.

The balloon is carrying the Stratospheric Terahertz Observatory (STO-II) from the University of Arizona. The instrument is designed to better understand the life cycle of the interstellar medium, which is the matter that fills the space between stars in the galaxy. Studying the interstellar medium will help us understand more about the life cycle of stars.

"This has been the earliest in an Antarctica campaign that all the planned missions were successfully launched," said Gabe Garde, NASA project manager. "The science and balloon teams and personnel with the National Science Foundation's United States Antarctic Program, all came together for the launches to be conducted early in the launch window."

Far Infrared

Kuiper Airborne Observatory: 1974-1995/D = 0.915 m

Radio

Very Large Array: 1980-2011/27 x 25 m

Very long time span without a significant new observatory

Herschel: 2009-2013/ *D* = 3.5 m

SOFIA 2011+/*D* = 2.5 m

Karl G. Very Large Array: 2011- /27 x 25 m

Submillimeter hydride absorption spectroscopy delivers crucial information on diffuse cloud and PDR chemistry

SOFIA and APEX are carrying on Great potential of adding radio wavelength data

Powerful new radio facilities

APEX and **SOFIA** Workshops (in alternating years)

- at Ringberg Castle, Bavaria
- organized by Friedrich Wyrowski
- Next SOFIA workshop March 5-8, 2017

Thanks for your attention