Ortho-to-para ratios of dihydride species: The interstellar NH₂ case

Romane Le Gal

Research Associate at UVa in Eric Herbst's group

Main external collaborators: Carina Persson (Chalmers, Sweden), Hua Guo (University of New Mexico)

Outline

Interstellar chemistry

- NH₂ in the interstellar medium (ISM)
- NH₂ ortho-para ratio (OPR) observations

Astrochemical modeling

- Building chemical network
- Results: comparison with observations

Amidogen (NH₂) in the ISM

- Characteristics
- Important radical in the first steps of N-chemistry
- Chemistry closely related to NH₃
- Light asymmetrical rotor with two spin symmetry configurations:
 - ortho (H spins parallel)
 - Para (H spins anti-parallel)
- Only few observations (submm λ)

• First detection

(CSO observation towards Sgr B2,

van Dishoeck et al. 1993)

NH₂ OPR observed towards high-mass starforming regions

PRISMAS key program data (PI: M. Gerin) & additional observations: OT1 program dedicated to N-chem (PI: C. Persson)

Energy level diagram of NH₂

(Persson, Olofsson, Le Gal et al., A&A. 2016) 5

NH₂ OPR towards W31C & W49N

Persson, Olofsson, Le Gal et al., A&A. (2016)

Romane Le Gal – The Hydride Toolbox – 13 december 2016

NH₂ OPR towards W51 & G34.3

Persson, Olofsson, Le Gal et al., A&A. (2016)

Interpretation of the observations

Interpretation of the observations

N31C

Orion Spur

W51 G34.3

Vorma

How these OPRs are formed

Study the processes and rates governing:(i) the formation of ortho and para forms(ii) their ortho-to-para conversion

W49N

(ii) their ortho-to-para conversion

Interpretation of the observations

V31C

vorma

How these OPRs are formed

Study the processes and rates governing:(i) the formation of ortho and para forms

W49N

(ii) their ortho-to-para conversion

Strategy

Identifying the species and pivotal processes at stake

W51

modeling the interstellar chemistry

G34.3

Astrochemical modeling

Interstellar chemistry

- Hydrides in the interstellar matting (IS
- NH2 Ortho-para ratio (OPR) observation

Astrochemical modeling

- Building chemical network
- Results: comparison with observations

Building chemical network

• Aims:

- Distinguish ≠ spin configurations of H₂ and of the multi-hydrogenated N-hydrides
- ⇒ Update & upgrade of the Flower et al. 2006 network
- Using recent experimental and theoretical work
- ⇒ Rist et al., JPCA 2013, Faure et al., ApJ
 2013 & Le Gal et al., A&A 2014

Romane Le Gal – The Hydride Toolbox – 13 december 2016

Building chemical network

• Aims:

- Distinguish ≠ spin configurations of H₂ and of the multi-hydrogenated N-hydrides
- ⇒ Update & upgrade of the Flower et al. 2006 network
- Using recent experimental and theoretical work
- ⇒ Rist et al., JPCA 2013, Faure et al., ApJ
 2013 & Le Gal et al., A&A 2014

Results: NH₂ OPR with T

Persson, Olofsson, Le Gal et al., A&A. (2016) 12

Results: NH₂ OPR with T

NH2 OPR

Persson, Olofsson, Le Gal et al., A&A. (2016) 12

Results: NH₂ OPR with T

Romane Le Gal – The Hydride Toolbox – 13 december 2016

NH2 OPR

Influence of the rate coefficient

Le Gal et al., A&A. (2016)

Results: H + NH₂ H-exchange barrierless

H + NH₂ H-exchange rate coefficient of $\approx 10^{-10}$ cm³ s⁻¹ is consistent with the theoretical computations

Le Gal et al., A&A. (2016)

Romane Le Gal – The Hydride Toolbox – 13 december 2016

Impact of NH₂ chemistry updates

Chemical reactions ^(a)						α	β	γ	References
						$({\rm cm}^3{\rm s}^{-1})$			
NH ₂	Ν	\rightarrow	N ₂	Η	Н	1.2(-10)	0.00	0.00	$KIDA^{(b)}$
NH_2	0	\rightarrow	NĤ	OH		7.0(-12)	-0.1	0.00	$KIDA^{(c)}$
-						3.5(-12)	0.5	0.00	Le Gal et al. $(2014a)^{(d)}$
NH_2	0	\rightarrow	HNO	Η		6.3(-11)	-0.1	0.00	$KIDA^{(c)}$

Le Gal et al., A&A. (2016)

15

Further modeling study

Models	1	2	3	Δ	5
Modifications	1		5	+	5
$H + NH_2$ H-exchange addition (reactions 5 and 6)	X	X	X	X	X
NH_2 destruction updates (see Table 2)		X	X	X	X
$[H_{tot}]_{ini} = 2 \times [H_2]$	X	X			X
$[H_{tot}]_{ini} = [H]$			X		
$[H_{tot}]_{ini} = \frac{1}{2} \times [H] + [H_2]$				X	
$\zeta = 1.3 \times 10^{-17} \mathrm{s}^{-1}$	X	X	X	X	
$\zeta = 3 \times 10^{-17} \mathrm{s}^{-1}$					X
$\zeta = 2 \times 10^{-16} \mathrm{s}^{-1}$					
$n_{\rm H} = 2 \times 10^4 {\rm cm}^{-3}$	X	X	X	X	X

16

Impact of the initial form of hydrogen

Impact of the ionization rate

Conclusions & future works

Conclusions:

- Gas-phase chemistry reproduces NH₂
 OPR ratios observed in 4 high-mass starforming regions:
 need spin chemistry for OPR < 3
 & H-exchange reaction for OPR > 3
- Models predictions:
 - \Rightarrow H₂ OPR ~ 10⁻³, consistent with NH:NH₂
 - ♦ $NH_3 OPR \approx 0.5 0.7$
 - ♦ NH₂ OPR depends on the temperature

Future works:

 Gas-grain processes impact (adsorption, desorption, surface reactions)

• Upgrade the chemical network for more diffuse conditions

Conclusions & future works

Su

DOO IN

30,000 ly

Conclusions:

- Gas-phase chemistry reproduces NH₂
 OPR ratios observed in 4 high-mass starforming regions:
 need spin chemistry for OPR < 3
 & H-exchange reaction for OPR > 3
- Models predictions:
 - \Rightarrow H₂ OPR ~ 10⁻³, consistent with NH:NH₂
 - ♦ $NH_3 OPR \approx 0.5 0.7$
 - NH₂ OPR depends on the temperature

Future works:

 Gas-grain processes impact (adsorption, desorption, surface reactions)

• Upgrade the chemical network for more diffuse conditions

Thanks for your attention!

Romane Le Gal – The Hydride Toolbox – 13 december 2016