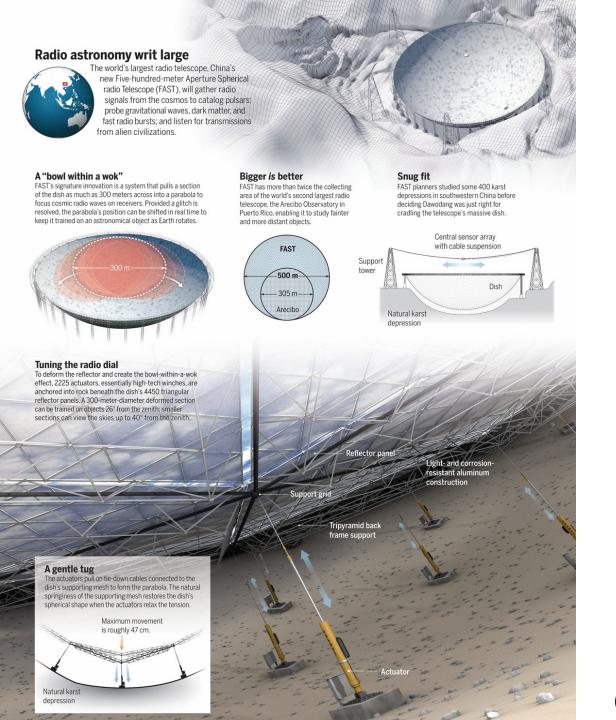


Five-hundred-meter

Aperture Spherical radio

Telescope (FAST)



Arecibo 300 m

(Science Magazine, Sep. 2016)

7 sets of frontend

No.	Frequency range ^(a) (MHz)	Number of Beams	Polarizatio n Mode ^(b)	System Temperatu re ^(c)
1	70-140	1	RCP & LCP	1000
2	140-280	1	RCP & LCP	400
3	270-1620	1	RCP & LCP	150
4	560-1020	1	RCP & LCP	60
5	1100-1900	1	RCP & LCP	25
6	1050-1450	19	X & Y linear	25
7	2000-3000	1	RCP & LCP	25

Timeline

- Project Approval: Dec., 2007
- Commence Construction: March, 2011
- Openning ceremony: Sep. 25, 2016
- •19 beam L-band array: to be delivered in Dec., 2016
- Backend upgrade (for commensal survey):
 - under development, to be expected in Spring of 2017
- **Commissioning:** 2016 ~2018
- •**Operation:** ~2019

Constraints on FAST

- Slewing time: 1.5min 10min **FAST is slow.**
- Beam and FOV: 3' in L-band, ~26' with 19 beam
- Drift Scan: only feasible mode for large surveys in early years
- Sky coverage: DEC -14° to 66° (-1° to 52° with full gain)
- Confusion limited: in 1 s @ ~1 mJy
- VLBI/Timing: moving phase center?

INCOMPLETE LIST OF PLANNED PROJECTS:

- (HIFAST) Galactic HI Emission/Absorption Survey
 Two drift passes at ~200 days each, starting summer 2017
 2.9'/~26' beam, ~10 mJy at 0.1 km/sec
 1 BILLION voxel HI map, ~2000 km/sec bandwidth
 Commensal with Pulsar, FRB, and Extra-Galactic Surveys
- Deep Orion Spectral Line Survey
 Search for undetected molecules
- OH IR Circumstellar Maser Survey
- Dark Gas Survey
 Heiles & Troland, 2003 (Arecibo, 79 sources)
 FAST: 800 quasars in 5 years (4 hrs/source)
- OH Mega-Maser Search
 FAST has 2.3X Arecibo Sky; Growing IR Galaxy Catalogs

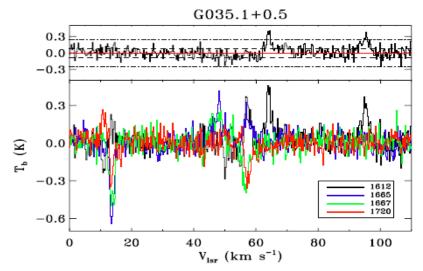
OTHER NOTABLES:

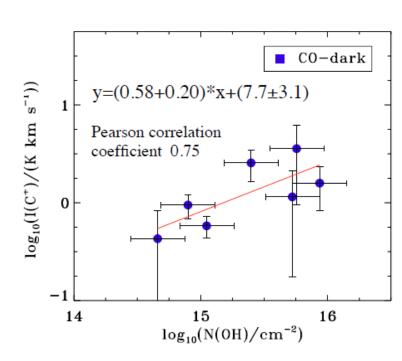
~2000 new pulsars (Improved IPTA), LIGO-FAST-VIRGO (~40-200 hours/FRB), reionization timing and power (~5-10 new local group gas-rich dwarfs), The Cosmic Web (10¹⁶ sensitivity with 8 hours), Breakthrough Initiative, LOFAR Collaboration?

OH Survey Along Sightlines of Galactic Observations of Terahertz C+

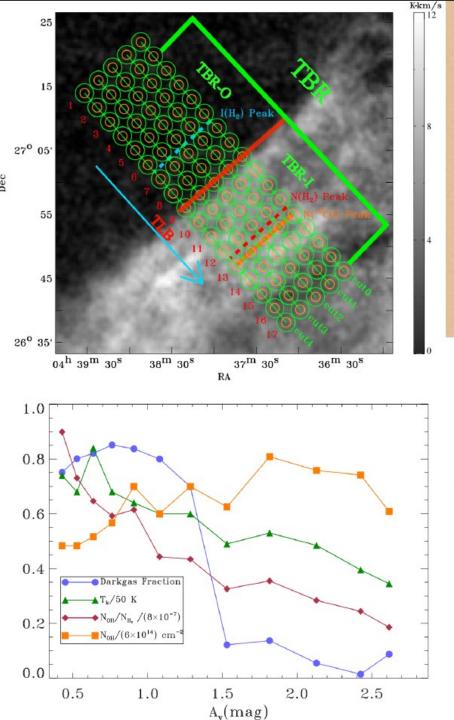
- Beam size ≈ 3 ' (Arecibo telescope)
- Galactic longitude range (32°,64°) (189°, 207°)
- OH sensitivity: $\sigma \approx 35 \text{ mK}$
- 151 OH components toward 51 sightlines of GOTC+
- All OH emissions conform to 'Sum Rule'

$$T_{\rm b}(1612) + T_{\rm b}(1720) = T_{\rm b}(1665)/5 + T_{\rm b}(1667)/9$$

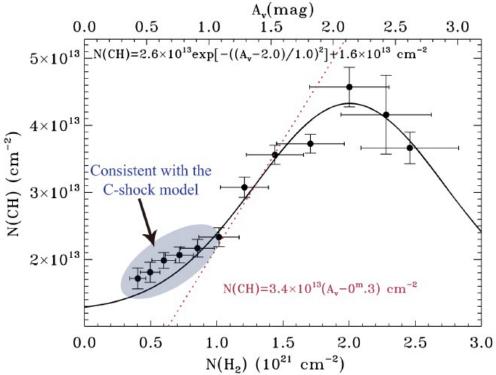

A correlation was found between C+ intensity I(C+) and N(OH) for CO-dark molecular clouds, consistent with C+ and OH being useful tracers of H₂ in CO-dark clouds.


TABLE 1 SUMMARY OF DETECTIONS OF ALL 151 OH CLOUDS.

Mask	ОН	C+	¹² CO	¹³ CO	Number ^a	$HINSA^b$
1 2 3 4 5 6	> > > > > > > > > >	x x x √ √	x √ x √	x x √ x x	17 17 50 10 9 48	1 5 24 1 2 16


^a The number of clouds in each mask.

candidates.



The number of HINSA detection in each mask.

- Colliding streams or gas flow at the boundary region
- ▶ Modeled OH transitions with RADEX
- Quantifying OH abundance and CO-dark molecular gas
- ▶ Conjugate emission of OH 1612 MHz and 1720 MHz indicating C-shock
- ▶ Overabundance of CH at A_V<1 mag indicating C-shock</p>
- CH is a better molecular gas tracer than CO and OH in the transition zone $(0.8 < A_V < 2.1 \text{ mag})$ (Xu et al., 2016)

Thank You!

- To participate in HIFAST survey contact: Marko Krčo (marko@nao.cas.cn)
- For OH Observing Proposals contact: Marko Krčo (marko@nao.cas.cn) or Di Li (dili@nao.cas.cn)

- OH Survey Along Sightlines of Galactic Observations of THz C+ Ningyu Tang, et al. (ApJ 2016, submitted) astrotomny@gmail.com
- Evolution Of OH and CO-Dark Molecular Gas Fraction Across A Molecular Cloud Boundary in Taurus Duo Xu et al. (ApJ 2016) xuduo117@163.com
- KEEP AN EYE OUT FOR CONFERENCE ANNOUNCEMENTS!

Opportunities

- → East Asia Core center of Astronomy (EACOA) Fellow: \$5000/month; two host during tenure
- → National Astronomical Observatories of China (NAOC) Fellowship
- → Big Science Center-FAST Fellowship
 - Senior fellowship (2weeks 1month)
 - Key Staff: ~1year
 - Postdoctoral fellowship: 2-3 years @ 2/year
- → Chinese Academy of Sciences (CAS) Fellowship (PIFI etc.)
- → Talent program: ~\$400 ~ 500 K startup grant