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Outline

Shock motivation

Characteristics of main types

The role of FUV - self-consistent modeling
e Can we explain low H-O abundances”
e Can we explain low H>O/OH?

Model spectra and potential observations



Shocks are ubiguitous in protostars
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.....supernovae
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. and even distant galaxies
H,O Emission at z=2.2
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Got War (Gas”?

Time scale to make
water is very short in
warm gas ..... regardless
of why it’'s warm

Log,o Abundance Relative to H,

Log,, Time (Years)

Bergin, Melnick & Neufeld 1998
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C-Shock Profile

® Continuous 1,v
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s v,=40kms" ® |ow ionization fraction,
N\ mg=10° cm™ carried by ions or grains
; bound to magnetic field
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® Efficient coolants so that

shock doesn’t “break down”
(below 40 km/s)
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® Forv~ |5km/s,T high
enough that gas-phase O
ends up converted to
Distance [10'® cm)] water

 Emission from gas at a range of temperatures up to ~4000K
* Emission over a range of velocities (~10s of km/s)

* Hydrides (OH and H20) along with O, CO and Hs are
important coolants
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J Shock Profile

e (Collisional and UV
dissociation in the hot
(T~10% K) post-shock
gas

e H> reformation begins
downstream at Ay ~
0.1

e Water forms
N efficiently in the warm
L L (T~500 K) molecular
bog N, o reformation plateau
* Molecular emission comes from ~500K plateau region
* (Gas has fully decelerated once molecules form
* Limited column of H20O and OH; CO, Ol dominate cooling




Shock types: gross
characteristics

e (C-shock allows molecules to
survive to T~4000 K. All free O
driven into H20, high ratio of H2O/
OH.

» J-shocks reach far higher
temperatures, but molecules are
dissociated ==> reformation
plateau at ~500 K, significant
atomic H drives H20 back to OH,
low ratio of HoO/OH.
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But something Is missing...

WISH low-mass sources have “wrong”
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But something I1s missing...

C-shocks influenced by the environment near

takes a clumpy interstellar medium. The fast J-type shocks provide a strong source of ultraviolet radiation, which
photodissociates the H,O in the cooling (7 < 300 K) gas behind the slow shocks and strongly affects the slow
C-type shock structure by enhancing the fractional ionization. At these high ionization fractions, C-type shocks

break down at speeds ~10—12 km s~ !, while faster flows will produce J-type shocks. Our model favors a preshock

— n() vS
N(H;0) ~ 4x 1016601 105 cm=3 10 km s!

Most shocked H2O is not at an abundance of 104in

SWAS OBSERVATIONS OF WATER IN MOLECULAR OUTFLOWS

JONATHAN FRANKLIN,! RoNALD L. SNeLL,! MicHAEL J. KaurMaN,? GARY J. MELNICK,
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Alternatively, the [O 1] emission could arise from the same weak

3

shocks that accelerate the bulk of the molecular gas. Future ob-
servations with Herschel, which has better angular and spectral
resolution, may help determine the relationship between the H,O
and [O 1] emissions and other shock tracers in these outflows and
provide a better understanding of the evolution of the H,O abun-
dance in these outflows.




Fvidence for ionized outtlow
cavity - FUV from protostar?

*"I"Hull et al. 2016
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Simple Modification:
Shock Chemical Profiles with External FUV
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FUV influence on Postshock O-chemistry

log[Column relative to H-]

log[FUV Field Strength]



What are the preshock conditions
N the protostellar environment”
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PDR Model: CO/

n=10% cm-3
Go=100
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What are the preshock conditions
N the protostellar environment”

Av = 0.1;

All oxygen available but
high ionization fraction
makes shocks
breakdown at low
speeds

1 0.1 1
Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,




What are the preshock conditions
N the protostellar environment”

Ay = few:
Oxygen frozen out by
factor of 10. lonization
may not allow shocks

above sputtering speed.
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Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,




What are the preshock conditions
N the protostellar environment”

Av = 10:

All oxygen frozen out; low
water without sputtering E
since O is locked in the E

ice.

1 0.1 1
Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,




Coupling Length Varies With Extinction
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e As FUV field
IS INnCcreased,
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FUV llluminated Shocks -
Parameter Space

J-shocks
Tmoi~500 K
XH20 ~ 10-°

30 40 o0

Shock Velocity [km/s]




Fffect of FUV on H-O and
OH Emission

n=10% cm-3, v.=20 km/s Black no FUV
all gas phase

Red Go=10

Note:
Fruv/Fshock ~ 0.01
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FUV moves ratios In the

correct direction
H,O / CO H,O / OH CO/OH
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| ine profiles
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HIRMES: Next-generation

spectrograph for SOFIA

® Coverage from
22-120 micron

® Full scan mode
complements
bygone Herschel
capabilities

® High-res mode
gives up to 3 km/s
resolution; shock

profiles: OH/H,O
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summary

Higher Go/n: More O and H20O in pre-shock gas

Higher Go/n: Smaller velocity at which H>O formation
turns on and lower velocity of C-shock breakdown,
perhaps excluding sputtering

Higher Go/n: Greater relative O and OH emission from
downstream gas

Promising comparisons with observations ranging
from massive outflows, through Oz, and low-mass
stars.



