Chemical probes of the turbulent diffuse ISM

B. Godard, E. Falgarone, G. Pineau des Forêts, P. Lesaffre, V. Valdivia, M. Gerin, and P. Hennebelle

The hydride toolbox, Paris, 2016

- 1 Overview of turbulence and its unknowns
- 2 Tracers of turbulence and deduction of its properties in the framework of the TDR model
- 3
- Limitations of 1D models and future prospects

Turbulent cascade

- advection force $\mathbf{u} \cdot \nabla \mathbf{u}$
- dissipation forces
 - ✓ friction $\nu \nabla^2 \mathbf{u}$
 - $\checkmark \text{ compression } \nu \nabla \left[\nabla \cdot \mathbf{u} \right]$
 - ✓ ion-neutral diff. $\gamma_{in}(\mathbf{u}_i \mathbf{u}_n)$
 - ✓ magnetic diff. $μ∇^2 b$

• transfer rate $\overline{\varepsilon} \sim 2 \times 10^{-25} \quad \mathrm{erg} \ \mathrm{cm}^{-3} \ \mathrm{s}^{-1}$

Hennebelle & Falgarone (2012)

Intermittency

Moisy & Jimenez (2004)

Open questions

- dissipative scales ? structures ?
- physical processes involved ?
- Iocal dissipation rate ?
- Ink with the magnetic field ?

average heating rates (erg cm ⁻³ s ⁻¹)				
photons	cosmic rays	turbulence	magnetic	
5 x 10 ⁻²⁴	3 x 10 ⁻²⁵	2 x 10 ⁻²⁵	2 x 10 ⁻²⁵	

photo dom. medium

turbulent mixing

dissipation

Le Petit et al. (2006) Röllig et al. (2007) Ferland et al. (2013)

Glover et al. (2010) Levrier et al. (2012) Valdivia et al. (2016)

Lazarian & Vishniac (1999) Lesaffre et al. (2013) Godard et al. (2014)

Neufeld et al. (2015)

Neufeld et al. (2015)

5/16

Chemistry of turbulent dissipation

Introduction The TDR model Chemistry of turbulent dissipation Limitations of 1D modeling Comparison with other molecular tracers

- magnetized vortices
- Lagrangian approach
- non equilibrium chemistry
- turbulent heating process
 - \checkmark viscous friction
 - ✓ ion-neutral friction

Relaxation phase

- Eulerian approach
- no turbulent heating

6/16

Model parameters

- density n_{H}
- A_V shielding
- CR ionization

stretching

$$a \rightarrow l$$

- max. rot. vel. $u_{\theta m} \to u_{in}$ 0
- $\overline{\varepsilon} \to N_V$ • transfer rate
- $\tau_V \to N_R$ Iifetime

Introduction The TDR model Chemistry of turbulent dissipation Limitations of 1D modeling Comparison with other molecular tracers

8/16

strategy to derive turbulent properties

- n_H increases with symbol size
- $A_V = 0.4$ $\zeta = 3 \times 10^{-16} \text{ s}^{-1}$

 $CH^+ \ vs \ N_H$

 $C^+ + H_2 \rightarrow CH^+ + H$ ($\Delta E/k = 4640 \text{ K}$)

9/16

 $CH^+ vs N_H$

 $C^+ + H_2 \rightarrow CH^+ + H$ ($\Delta E/k = 4640 \text{ K}$)

10/16

CH+ vs SH+

 $\frac{\text{ion-neutral drift}}{N(\text{CH}^+)} \propto \exp(5220/T_{\text{eff}})$

• indep. of other param

10/16

CH+ vs SH+

ion-neutral drift

$$\frac{N(\mathrm{SH^+})}{N(\mathrm{CH^+})} \propto \exp(5220/T_{\mathrm{eff}})$$

• indep. of other param

CH+ vs SH+

10/16

•
$$\frac{N(\mathrm{GH}^{+})}{N(\mathrm{CH}^{+})} \propto \exp(5220/T_{\mathrm{eff}})$$

• indep. of other param

CH+ vs SH+

ion-neutral drift $\frac{N(\mathrm{SH}^{+})}{N(\mathrm{CH}^{+})} \propto \exp(5220/T_{\mathrm{eff}})$

10/16

• indep. of other param

•
$$2.5 \leqslant u_{\theta m} \leqslant 3.5 \text{ km s}^{-1}$$

correlation reproduced

CO vs HCO+

dissipation timescale

• $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100 \times \tau_R(HCO^+)$

CO vs HCO+

dissipation timescale

• $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100 \times \tau_R(HCO^+)$

dissipation timescale

• $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100 \times \tau_R(HCO^+)$

 $N(CO) \propto \tau_R / \tau_V \quad \rightarrow \quad 10^2 \leqslant \tau_V \leqslant 10^3 \text{ yr}$

Introduction The TDR model Chemistry of turbulent dissipation Limitations of 1D modeling Comparison with other molecular tracers

 $CO \ vs \ H_2$

realistic fragmentation + PDR

- $N(CO)_{obs}/N(CO)_{PDR} > 10$
- bending explained

Turbulent dissipation regions

• if full fragmentation, no bending

Introduction The TDR model Chemistry of turbulent dissipation Limitations of 1D modeling Comparison with other molecular tracers

Limitations of 1D modeling

chemical discrepancies

- SH require high velocity drift
- H₂S, SO underestimated by a factor of 10

- distribution of events
- missing physical and chemical processes?

theoretical limitations

- ID idealized structures
- stationary model (see talk by P. Lesaffre)
- o no realistic distribution of events Lesaffre et al. (2013)
- Ine profile not predicted
- fluid cells history not included
- Iack realistic radiative conditions
- Iack of coupling between scales & coherence with turbulent cascade

- Joulain et al. (1998)
- Levrier et al. (2012)
- Momferratos et al. (2014)

need for a more realistic framework

implementation of chemistry

16/16

- ✓ computational time
- ✓ timescales / out-of-

equilibrium effects

- biphasic / monophasic
- impact of turbulent mixing
- dissipative scales / processes

Summary

species influenced by turbulence (mixing or dissipation)

strongly	moderately	mildly
CH^+ H_2^* H_2S	HCO+ CO	CH C ₂ H
SH+ SH	SO	I(C+)

- extract turbulent properties in the framework of TDRs
 - CH+ / H dissipation rate and density
 - ► SH+ / CH+ → ion neutral decoupling
 - CO / HCO+ ____ dissipation timescale
- open issues and future prospects
 - formation of S-bearing species (H₂S, SO, SH, ...)
 - lack of realistic distribution & line profiles in 1D models
 - need for chemistry in simulation of MHD turbulence