Radiolysis of Cosmic Ice Analogs of Ammonia, an Interstellar Hydride

Leslie Gates and Chris Arumainayagam Wellesley College, Massachusetts, USA

$P = 1 \times 10^{-9}$ Torr

Interstellar synthesis of prebiotics: Widely Accepted Hypothesis

Origins of UV light in dark, dense molecular

icy interstellar

dust grain

X

Н

HH

TT

clouds

UV light from stars cannot penetrate dark, dense molecular clouds

nearby star

Our Hypothesis

Low-energy electrons (< 20 eV) could play a significant role in the synthesis of "complex" organic molecules previously thought to form exclusively via photons

Formation of secondary electrons in cosmic ices and dust grains

secondary electron cascade (0-20 eV)

thin (~100 ML) ice layers (10 K)

> Cosmic ray 10⁷-10²⁰ eV

bare silicaceous or carbonaceous interstellar dust grain

Flux of Cosmic Rays Reaching Earth

Importance of Low-Energy Electrons

C. Arumainayagam et al., Surface Science Reports 65 (2010) 1–44.

Electron-induced dissociation mechanisms

How to break a 5 eV bond with a 3 eV electron?

"Thermodynamic Threshold"

$$\Delta H_{o}(\mathbf{B}^{-}) = D(\mathbf{A} - \mathbf{B}) - EA(\mathbf{B})$$

C. Arumainayagam et al., Surface Science Reports 65 (2010) 1-44.

Energetics of Photochemistry

Another Key Difference between Photons and Electrons

Why study Ammonia?

Öberg, K., et al. "The Spitzer Ice Legacy: Ice Evolution from cores to protostars." The Astrophysical Journal 740(2011): 16 pp.

Possible Radiolysis Products of Ammonia

Detection of Hydrazine and Diazene at High Incident Electron Energies

Katie Shulenberger `14 (Wellesely College)

Proposed Mechanisms of Hydrazine and Diazene from Ammonia Hydrazine (N₂H₄)

Diazene (N_2H_2)

Zheng, W. et al. The Astrophysical Journal. 674:1242-1250, 2008 February 20

Model: Bimolecular Intermediate Step

Results: Hydrazine Yield vs Electron Fluence

Results: Yield vs Film Thickness

Production of Hydrazine and Diazene at Incident Electron Energy of 10 eV at 90 K

Production of Hydrazine at Incident Electron Energy of 7 eV at 25 K

Leon Sanche, Andrew Bass & Sasan Esmaili

Importance of Surface Temperature

Desorption of •NH₂

1000 eV 👘

7 eV

Final Conclusions

- Electron-induced reaction of ammonia yields hydrazine (N₂H₄) and diazene (N₂H₂) with high-(1000 eV) or low-energy (7-20 eV) electrons.
- The results are consistent with our hypothesis that high energy radiolysis is mediated by low-energy electrons

Acknowledgements

Collaborators

Dr. Andrew Bass, Université de Sherbrooke Sasan Esmaili, Université de Sherbrooke Leon Sanche, Université de Sherbrooke Dr. Petra Swiderek, University of Bremen Esther Bohler, , University of Bremen

Former lab members

Katie Shulenberger '14 Katherine D Tran '15 Sebiha Abdullahi '15 Jane L. Zhu '16 Carina Belvin '16 Kathleen Regovish '16 Lauren Heller '17 Milica Markovic '17

Funding Source

National Science Foundation (CHE-1465161, CHE-1012674, CHE-1005032)

Current Lab Members

Helen CumberbatchAJulia LukensCIZoe PeelerEIAlice ZhouMJyoti CampbellRIKendra CuiStJean HuangStHope SchneiderEIAnna Caldwell-AOverdierJuJeniffer PereaA

Ally Bao Christina Buffo Eliana Marosica Mayla Thompson Rhoda Tano-Menka Stephanie Villafane Subha Baniya Ella Mullikin Ally Bao Justine Huang Aury Hay

Kinetics of Radical-Radical Association Reactions

- Radical-radical reactions: no energy barrier
- PE falls monotonically as distance \downarrow
- Radical energy $\uparrow \Rightarrow$ Reaction probability \downarrow
- Temperature $\uparrow \Rightarrow$ Rate constant \downarrow

Assume reaction is not diffusion limited

Results: Yield vs Irradiation Time

Bunsen-Roscoe Law of Photochemistry

A photochemical effect is directly proportional to the total energy dose, irrespective of the time required to deliver that dose

Despite constant electron dose across experiments, we observe varying ammonia radiolysis product yields

Dose Rate Effect in Radiation Chemistry

U.S. Department of Health & Human Services

Hydrazine Data

Diazene Data

