

State-to-state reactive and inelastic collisions involving hydrides

Alexandre Faure¹, O. Alpizar, A. Bacmann¹, A. Bergeat³, C. Ceccarelli¹,
S. Chefdeville³, M. Costes³, F. Daniel¹, F. Dumouchel², M. Fournier⁴, P. Halvick³,
P. Hily-Blant¹, Y. Kalugina², H. Labiad, M. Lanza², R. Le Gal¹, S. Le Picard⁴,
F. Lique², S. Maret¹, J. Mezei², C. Naulin³, C. Rist¹, I. Schneider², I. Sims⁴,
T. Stoecklin³, L. Wiesenfeld¹

¹Université de Grenoble, IPAG, France ²Université du Havre, LOMC, France ³Université de Bordeaux, ISM, France ⁴Université de Rennes, IPR, France

- Hydrides have high critical densities (>10⁶ cm⁻³)
- « Sub-thermal » excitation is the rule
- State-specific reactive processes compete with energy transfer processes

Outline

- Carbon
 - CH⁺, CH
- Nitrogen
 - NH₂, NH₃
- Oxygen
 - H₂O, OH, OH⁺
- Halogen
 - HCI
- Noble gas
 - ArH⁺

Colliders in the ISM

- He can be important but never dominant
- H₂ most important in well-shielded molecular clouds
- H important behind dissociative shock fronts and PDRs
- e⁻ important in PDRs, especially for polar species

Molecular energy transfer

The H_2O-H_2 potential energy surface

- Scattering theory (BO approximation)
 - Electronic Schrödinger equation
 - Nuclei dynamics

Experiment

- Crossed molecular beams
- Double resonance technique
- Ion trap experiments

Carbon

C+(²P) + H₂(v, j) \rightarrow CH⁺(X¹\Sigma⁺, j') + H

- Endothermic with H₂(v=0)
- Wavepacket calculations by Roncero's group, in agreement with measurements with H₂ in v=0 and v=1
- CH⁺ is formed rotationally hot, with a broad rotational distribution

CH⁺ destruction CH⁺($X^{1}\Sigma^{+}, j$) + H \rightarrow C⁺(²P) + H₂

Werfelli et al. J Chem Phys 143 114304 (2015) Faure et al. to be submitted

CH⁺ emission in PDRs

et al. to be submitted

. ~2

- Formation pumping is crucial for short-lived species (Black 1998, Godard & Cernicharo 2013)
- High-*j* transitions (*j*≥2) are pumped by $C^+ + H_2(v>0)$
- See talk by Anna Parikka

CH excitation CH($X^2\Pi$, j) + He \rightarrow CH($X^2\Pi$, j') + He

View Article Online

Marinakis et al. Phys Chem Chem Phys (2015)

- Experiments by McDonald & Liu (1989, 1990) on CH-He, CH-H2, CH-D2
- Propensity rules due to parity and symmetry properties of A-doublets
- Collisions with H₂ can form (CH₃)*.
 Quantum statistical calculations performed by Dagdigian (2016)

Nitrogen

$\begin{array}{l} \mathsf{NH}_2 \text{ excitation} \\ \mathsf{NH}_2(\mathsf{j}_{\mathsf{kakc}}) + \mathsf{H}_2 \not \rightarrow \mathsf{NH}_2(\mathsf{j'}_{\mathsf{k'ak'c}}) + \mathsf{H}_2 \end{array}$

View Article Online

Li & Guo Phys Chem Chem Phys (2014) Bouhafs et al. submitted to J Cherm Phys

- The exothermic reactive channel (NH₃+H) has a barrier of 4800K
- The full-dimensional PES was adapted for rigid-rotor calculations
- Transitions with $\Delta k_c = 0$ favored, in contrast to radiative selection rules

$NH_{3} excitation$ $NH_{3}(1_{1}^{-}) + nH_{2} \rightarrow NH_{3}(j'k') + nH_{2} @580cm^{-1}$

- Differential cross sections measured in crossed molecular beams
- The good agreements with theory provide a crucial test of the NH₃-H₂ PES of Maret et al. (2009)
- Full set of new data for NH₃-H₂ and NH₃-H available soon (Rist et al. to be submitted)

NH₃ ortho-to-para ratio

- Ortho-to-para ratios (OPR) can be related to a *formation* temperature
- Anomalous OPR for NH₃ (<1) measured with Herschel (Persson et al. 2012)
- Is the deficit of oNH₃ due to nuclearspin chemistry ?

NH₃ ortho-to-para ratio

- In a pH₂ enriched gas, formation of pNH₃ is favored (Faure et al. ApJ 2013)
- This is due to nuclear-spin selection rules (Quack 1977, Oka 2004, Schmiedt et al. 2016)
- Several other hydrides expected to be sensitive to the OPR of H₂, see talk by Romane Le Gal (NH₂)

Oxygen

$\begin{array}{l} H_2 O \text{ excitation} \\ H_2 O(j_{kakc}) + X \rightarrow H_2 O(j'_{k'ak'c}) + X \end{array}$

Faure et al. (2004); Yang et al. (2013); Daniel et al. (2011); Daniel et al. (2015)

- Water has been extensively studied in collision with He, H, H₂ and e⁻
- No simple scaling relationship between the various colliders
- High energy scattering is dominated by kinematics (rather than features of the PES)

$\begin{array}{l} H_2 O \text{ excitation} \\ H_2 O(j_{kakc}) + H_2 \rightarrow H_2 O(j'_{k'ak'c}) + H_2 \end{array}$

- The H₂O-H₂ PES of Valiron et al. (2008) was fully checked experimentally:
 - Inelastic differential cross
 - Pressure broadening
 - Elastic integral cross sections
 - Spectrum of the complex
 - Second virial coefficient
 - Vibrational relaxation
- Most recent check in crossed molecular beams in Bordeaux

OH excitation OH(j) + $H_2 \rightarrow OH(j') + H_2$

Schewe et al. J Chem Phys (2015)

- New OH-H₂ PESs obtained by Ma et al. (2014)
- In contrast to CH-H₂, there is no formation and decay of a collision complex
- Cross sections with pH₂ differ significantly from Offer et al. (1994)

OH⁺ excitation OH⁺(j, F) + H \rightarrow OH⁺(j', F') + H

Stoecklin et al. J Phys ChemA (2015)

- The abstraction channel is closed, in contrast to CH⁺+H
- Rigid-rotor approximation is acceptable (Stoecklin et al. 2015), see talk by François Lique
- Electron-impact cross sections also available (van der Tak et al. 2013)

Chlorine

HCI(j) + $H_2 \rightarrow HCI(j') + H_2$

Lanza et al. J Chem Phys (2014)

- Calculations with H₂ strongly differ from He, e.g. near-resonant energy transfer.
- From the detection in L1157-B1 (Codella et al. 2012) HCl is a negligible reservoir of chlorine

Argon

ArH⁺ excitation

- ArH⁺ first detected in the Crab nebula by Barlow et al. (2013)
- Collisions with H and H₂ can be neglected (Loh et al. 2012)
- Robust determination of electron density (in good agreement with S⁺ observations)

Summary List of available systems

	He	H ₂	Н	e-
СН	Х	Х		
CH ₂	Х			
CH+	Х		Х	Х
NH	Х			
NH ₂		Х		
NH_3	Х	Х	Х	
ОН	Х	Х		
H ₂ O	Х	Х	Х	Х
OH⁺	Х		Х	Х
H ₃ O+				Х
SH	Х			
HF	Х	Х		
HCI	Х	Х	Х	Х
ArH ⁺				Х

- <u>home.strw.leidenuniv.nl/~</u> <u>moldata/</u>
- basecol.obspm.fr/
- ipag.osug.fr/Hydrides/

Conclusions

- Current calculations give an accuracy rivalling experiment
- Excitation of hydrides is strongly sensitive to the collider (He, pH₂, oH₂, e⁻)
- State-to-state formation rates are becoming available
- Nuclear spin selection rules are crucial to model o/p ratios

Ackowledgements

Special thanks to

- Paul Dagdigian (John Hopkins University)
- Maryvonne Gérin (ENS Paris)
- Pascal Honvault (Université de Bourgogne)
- Sarantos Marinakis (Queen Mary University)
- Guillaume Pineau des Forêts (IAS Paris)
- Octavio Roncero (CSIC Madrid)
- Jonathan Tennyson (University College London)
- This work has been supported by
 - Agence Nationale de la Recherche (ANR-HYDRIDES, contract ANR-12-BS05-0011-01) <u>http://ipag.osug.fr/Hydrides/</u>
 - CNRS/INSU national program "Physico-Chimie du Milieu Interstellaire"