Hydrides in solid phases: physical processes and chemistry

ce party, Cyprus

Hydrides Toolbox, Dec 2016, Paris

Outline

Short inventory of clouds & YSOs envelopes ices

Hydrides

 H_2O in disks H_2O ice structure, desorption & sputtering NH_3 & ice matrix environment The related NH_4^+ CH_4

Cosmic abundances & ice detectivity upper limits (H₂S, NH₂, HF, HCI)

Protostars (LYSOs;MYSOs) Disks

Field stars (BG)

Pre-Collapse Black Cloud B68 (comparison) (VLT ANTU + FORS 1 - NTT + SOFI)

C European Southern Observatory

ESO PR Photo 02c/01 (10 January 2001)

B, V, I

Glossary

E. Dartois – Hydrides To HI330 C. Burrows (STSd & ESA), WFPC 2 Team & NASA

Inventory of ices Identified and suspected species

1941 - Sec.	MYSOs	LYSOs	BG Stars	
Securely	identified s	species ^d :		
H_2O^e	100	100	100	The dominant hydride:
CO ^e CO ₂ ^e CH ₃ OH	7_4^{15} (7) 3-26 19_{12}^{25} 11-27 9_5^{23} (5) (< 3)-31	21_{12}^{35} (18) (<3)-85 28_{23}^{37} 12-64 6_{5}^{12} (5) (< 1)-25	25^{43}_{20} 9-67 26^{39}_{18} 14-43 8^{10}_{6} (6) (<1)-12	∝ A_V past a threshold $X_{ICE}(H_2O)/X(H) \sim 10^{-5}-10^{-4}$
NH ₃	$\sim 7^{\rm f}$	6^8_4 (4) 3-10	<7	Not easy to observe
CH ₄	1-3	4.5_3^6 (3) 1-11	< 3	Seem contemporary of H ₂ O phase
Likely id	lentified spe	cies ^g :		
H ₂ CO	~2-7	~6		
OCN-	$0.6^{0.7}_{0.3}$	$0.6^{0.8}_{0.4}$ (0.4)		
OCS	0.1-1.9 0.03-0.16	(< 0.1)-1.1 ≤ 1.6	< 0.5 < 0.22	Boogert+2015 & ref therein

E. Dartois - Hydrides Toolbox 2016

Inventory of ices

The tentative ice list

	MYSOs	LYSC)s	BGstars
HCOOH	4_3^5 (3)			
	(< 0.5)-6	(< 0.	5)-4	<2
$C_2H_5OH^i$	$\sim X_{\rm H_2O}({\rm HC})$	COOH)		
HCOO-j	$0.5^{0.7}_{0.5}(0.5)$			
	0.3-1.0	~0.4		< 0.1
$C_2H_4O^j$	X _{H2O} (HCO	0 ⁻)×1	.1	VSC
$\rm NH_4^+$	11913	11_{7}^{15}		8_6^{11}
	9-34	4-25		4-13
SO_2	(< 0.9)-1.4	~0.2		
PAH ^k	3-20	1.000		
\	Which processi	ng?	Photol Radiol Surfac	lysis lysis ce/thermal

The upper limits (~MYSOs)

Species	X_{H_2O}
	%
N ₂	< 0.2 - 60
O2	< 39
	< 15
H_2	< 68
H_2S	< 0.3 - 1
1999	<1-3
H_2O_2	< 2 - 17
C_2H_2	< 1 - 10
C_2H_6	< 0.3
C5H12	< 15
C3O2	< 5
N2H4, N2H5	< 10
HNCO	< 0.3 - 0.7
HCONH ₂	< 1.5
NH2CH2OH	< 3-6
NH2CH2COOHd	< 0.3

6/32

Inclination & flaring determines what is probed

H_O NH, *7

K_O libration 7

CRBR 2422.8-3423

10

0

0

08

80

Pontoppidan+2005

100

60

R [AU]

20

Silloute

10 Wevelength [micron]

HCOOK

8

20

40

Face on disks will observed in scattering

 Sputtering together with stochastic heating and VUV secondary photons (re-)inject species in the gas phase

Lupus 3 dark cloud © ESO/F. Comeron

CR induced ice phase modification ?

Porous ASW -> compact amorphous ice

Many work already @ low energies:

e.g. Baratta et al. 1991; Strazzulla et al. 1992; Moore & Hudson 1992; Leto & Baratta 2003; Baragiola et al. 2005; Mastrapa & Brown 2006; Raut et al. 2007; 2008; Famá et al. 2010...

Change reactivity for surface reactions: reduce surface available & nature of sites close the porosity for diffusion

The ice profile contains information on the structural processing

E. Dartois - Hydrides Toolbo

peux position [1/pm]

Observational Spectroscopic differences ?

UV photons

Surface reaction formation: also compact ice

Accolla+2013

Spectroscopically difficult to pinpoint which process is at work, More based on lab measured efficiencies

E. Dartois - Hydrides Toolbox 2016

Implementation in astrophysical models

H₂O CR sputtering rate

 η_{CR} sputtering $\approx 8 H_2 O/cm^2/s$ for $\zeta = 10^{-16} s^{-1}$

Under implementation in the Meudon PDR code

Le Petit, Bron, ..., in preparation

A mechanism to add to UV photons photodesorption

Talk by R. Martin-Doménech Visit p27(R. Dupuy) & p28(T. Putaud)

E. Dartois - Hydrides Toolbox 2016

 Ammonia IR active modes, if pure, fall in strong absorption of ice and silicates

Band profiles – hydrate (NH₃ abundance limit)

Dartois+2001, 2002

■ A new feature ≠ new species

Interactions must be recorded in the laboratory

 NH_3

Brooke & Sellgren 1999

■ An interaction giving access to the (ammonia) hydrates limit contribution $NH_3 / H_2O \le 7\%(3.8+-1.8\%)$

Dartois+2001

Direct observations of the umbrella mode

Adapted from Bottinelli+2010

20/32

Umbrella mode in a polar environment

Dartois+2001, 2002

Related hydride ?

NH₄⁺ most likely contributing carrier

Many exp. work

e.g. Demyk+1998, Novozamsky+2001, Raunier+2004, Guennoun+2006, Moon+2010, Galvez+2010

Photolysis of H₂O/CO₂/NH₃/O₂ 10/1.2/0.9/0.9 180K

 NH_4^+ would represent about 7-11% of H_2O

NH₂ observed in the lab ice, not in the astro. obs. (solid)

Counterion ?

Van Broekhuizen+2005 & ref therein

25/32

lons with great importance to pin point underlying processes

Correlate strongly with H_2O and CO_2 , no other ice

 CH_4

Oberg et al. 2008

Similar abundances variations in low- and high-mass YSOs

Abundance

Species		$X_{B,d}^{*}$	· [例]			$X_{\rm H}^{\rm h} [10^{-6}]$	
	MYSOn	LYSOs	BG Stars ⁴	Comets	MYSOs	LYSOn	BG Stars ⁴
Securely	identified r	species					
B ₂ O ^e	100	100	100	100	31管 12-57	38월 (42) 14-99	40() (39) (< 9)-62
CO ^e	7 ¹⁵ (7) 3-26	21^{35}_{13} (18) (<3)-85	25 ⁴³ 9-67	0.4-30	$2.6_{0.6}^{8.8}(1.9)$ (< 0.4)-12.8	$9.6^{17}_{4.8}$ (8.1) (< 1.2)-26	12 ²⁰ 3-21
$\mathrm{CO}_2^{\mathrm{o}}$	1975	285	26 [2	14弦	3.7]3	11.82	13.215
CH ₂ OH	9_{1}^{23} (5)	6_{2}^{12} (5)	8 ¹⁰ ₀ (6)	4-20	$3.7^{11}_{1.9}$ (1.7)	2.4-35 3.3 ⁷ / ₂ 3 (2.3)	$5.2^{6.4}_{3.2}$ (2.4)
NH ₃	(< 3)-31	(< 1)-25 6_4^8 (4)	(<1)-12	0.2-7	(< 0,4)-16.6	(< 0.2)-15 $3.6^{5.4}_{2.4}$ (2.6)	(< 0.6)-6.6
CH ₄	$\sim 7^4$	3-10 4.5% (3)	< 7	0.2-1.4	~4"	(< 0.4)-6.4 2.3 ³ [×] ₃ (1.4)	<4
	1-3	1-11	<3	0.4-1.6	0.4-1.8	(< 0.2)-5.6	<1.2

Boogert et al. 2015

 $A_V/N_H \sim 10^{-21} \text{cm}^2$ then for A_v eq 5

N_{H2O} ~10¹⁷cm⁻²

~200 times NH_3 in

Roueff et al. 2005

Upper limits

Species	$X_{ m H_2O}$ %	$rac{X_{ m H}}{10^{-6}}$	Environment ^a (reference) ^b
N ₂	< 0.2 - 60	< 0.1 - 28	Taurus cloud (1, 2, 3)
O2	< 39	< 60	LYSO R CrA IRS2 (4)
	< 15	< 30	MYSO NGC 7538 IRS9 (4)
H ₂	< 68	< 14	LYSO WL 5 (5)
H ₂ S	< 0.3 - 1	< 0.04 - 0.12	MYSOs (6)
201	< 1 - 3	< 0.6 - 1.6	Taurus cloud (6)
H_2O_2	< 2 - 17	< 0.6 - 8	YSOs, Taurus cloud (7)
C_2H_2	< 1 - 10	< 0.4 - 4	MYSOs (8)
C2H6	< 0.3	< 0.14	MYSO NGC 7539 IRS9 (8)
C5H12	< 15	< 10	MYSO W 33A (12)
C3O2	< 5	< 2	YSOs (9)
N_2H_4 , $N_2H_5^+$	< 10	< 4	MYSOs (8)
HNCO	< 0.3 - 0.7	< 0.10 - 0.24	MYSOs (11)
HCONH ₂	< 1.5	< 1	MYSO W 33A (12)
NH ₂ CH ₂ OH	< 3 - 6	< 2 - 4	MYSO W 33A (13)
NH2CH2COOHd	< 0.3	< 0.1	MYSO W 33A (10)

Corollary: every detected ice is a major species

Cosmic abundance and ices detectivity

Upper limits (H₂S, HF, HCl)

Thank you for your attention

