

A 3-D MODEL OF THE DISTRIBUTION AND DEUTERATION OF H₂O IN SGR B2(M)

C. Comito, University of Cologne, Germany

P. Schilke, A. Schmiedeke, A. Sanchez-Monge, Cologne E. Bergin, University of Michigan D.C. Lis, Observatoire de Paris and the HEXOS team

Max-Planck-Institut für Radioastronomie

DEUTERIUM FRACTIONATION

 Abundance of deuterated counterpart of a molecular species is enhanced with respect to the cosmic ratio:

• [XD]/[XH] > [D]/[H] ~ 10⁻⁵

- Important tool to infer physical conditions in molecular clouds:
 - kinetic isotope effect: gas-phase fractionation is efficient in cold gas
 - freeze out on dust grains + grain-surface reactions
 - released into gas phase when ices sublimate in warm environments
- window onto "fossile" chemistry

HERSCHEL/HIFI OBSERVATIONS OF EXTRAORDINARY SOURCES: HEXOS

 Herschel/HIFI SgrB2(M) line survey acquired in 2010/2011 (GT KP HEXOS, Bergin+ 2010). We have detected (or not detected...):

- I5 HDO transitions
- II (ortho) + I2 (para) H₂¹⁶O transitions
- 12 (ortho) + 12 (para) H₂¹⁸O transitions
- 9 (ortho) + 12 (para) H₂¹⁷O transitions

We are attempting to fit >80 rotational transitions between ~0.5 and ~1.8 THz simultaneously.

Non-detections are detections, too!

Angular momentum J

∪,⊥

THE PROBLEM

- Simultaneous fit of many transitions from complex source
- Water is all over the place! Line of sight within the HIFI beam affected by high-mass star formation on all scales. Hot cores, clumps, HII regions, envelope (+ filaments, outflows...).
- Common simplifications (LTE) do not apply over such a wide range of densities and temperatures.
- ► Full radiative transfer.

BRINGING TOGETHER RADMC-3D AND LIME: PANDORA

SGR B2: CONTINUUM

- Model C from Schmiedeke+ 201
- 3D Monte Carlo calculations
- Fitting small- and large-scale data, fro 140 AU to 45 pc.
- Multi-wavelength dataset, from cm tc IR wavelengths.
- Temperature and density distribution of the dust

 starting point for prediction of molecular spectra.
- Figure: Blue: JCMT SCUBA 850 micron, green: CS –Sharc II 350 micron, red: Herschel – PACS 70 micron

Schmiedeke+ 2016

MODEL PARAMETERS AND ASSUMPTIONS

- Free parameters: [HDO]/[H₂] and [H₂O]/[H₂]. Two-step abundance increase:
 - T > 100 K: release of H_2O and HDO from grains into gas-phase
 - T 250 K gas-phase production of H₂O (Comito+ 2010: 200 K)
- No LTE approximation > we need collisional rates. From the LAMDA database (Schöier+ 2005):
 - HDO (Faure+ 2012), o-H₂O, p-H₂O (Barber+ 2006, Dubernet+ 2006, Dubernet+ 2009)
 - $o/p-H_2^{18}0$ and $o/p-H_2^{17}0$ collisional rates based on $o/p-H_2^{16}0$
- Ortho/para-H₂O = 3, $[^{16}O]/[^{18}O] = 250$, $[^{17}O]/[^{18}O] = 800$ (Wilson & Rood 1994).
- All data are single-sideband (after sideband separation, Comito & Schilke 2002).

OUTER ENVELOPE (T < 100 K):

INNER CORE(S), T > 250 K

best fit for T>250 K: [H₂O]/[H₂] = 4.2×10⁻⁶ [HDO]/[H₂] = 8.2×10⁻¹⁰

Comito+ in prep.

INTERMEDIATE REGION (100 K < T < 250 K)

150

HDO

RESULTS PART I

- We have achieved a simultaneous fit of ~ 80 H₂O and HDO transitions between 500 and 1800 GHz, and of the continuum emission, towards Sgr B2(M).
- Total H₂O abundance, [H₂O]/[H₂]:
 - 1.3 x 10⁻⁷ when T< 100 K
 - 3.5 x 10⁻⁶ when 100 < T< 250 K
 - 4.2 x 10⁻⁶ when T > 250 K
- Consistent with Comito+ 2003, cf. Choi+ (AFGL 2591, [H₂O]/[H₂] up to 2 x 10⁻⁸).
 cf. E. van Dishoeck's review talk

RESULTS PART II

- [HDO]/[H₂]:
 - 3.4 x 10^{-11} , 8.2 x 10^{-10} , 8.2 x 10^{-10}
- [HDO]/[H₂O]:

• 3×10^{-4} , 3×10^{-4} , 2×10^{-4} respectively.

- Up to 150 times larger than [D]/[H] in the Galactic Center? Lubowich et al. 2000.
- cf. Neill+ 2013 in Orion-KL. Coutens+ 2014 in G34.26+0.15: [HDO]/
 [H₂O] in absorbing gas 10x lower than in hot core.

OPEN ISSUES

- HDO/H₂O steady across the Sgr B2(M) envelope: age?
 Compare to Sgr B2(N), chemical models.
- mm lines (Gensheimer+ 1990, Belloche+ 2013, Sanchez-Monge in prep.) underestimated
 — model description of inner cores needs to be improved (IRAM 30m, ALMA)
- "Where's the oxygen??" (thanks Cecilia Ceccarelli!)

ATOMIC OXYGEN

It's a 3D model! From single-point spectra to maps (ALMA)

